分层图最短路--最通俗易懂的讲解

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sugarbliss/article/details/86551050

分层图最短路是指在可以进行分层图的图上解决最短路问题。分层图:可以理解为有多个平行的图。

一般模型是:在一个正常的图上可以进行 k 次决策,对于每次决策,不影响图的结构,只影响目前的状态或代价。一般将决策前的状态和决策后的状态之间连接一条权值为决策代价的边,表示付出该代价后就可以转换状态了。

一般有两种方法解决分层图最短路问题:

  1. 建图时直接建成k+1层。
  2. 多开一维记录机会信息。

当然具体选择哪一种方法,看数据范围吧 。 

第一种方法: 

我们建k+1层图。然后有边的两个点,多建一条到下一层边权为0的单向边,如果走了这条边就表示用了一次机会。

有N个点时,1~n表示第一层,(1+n)~(n+n)代表第二层,(1+2*n)~(n+2*n)代表第三层,(1+i*n)~(n+i*n)代表第i+1层。因为要建K+1层图,数组要开到n * ( k + 1),点的个数也为n * ( k + 1 ) 。

对于数据:

n  =  4,m  =  3, k  =  2

0       1        100

1       2        100

2       3        100

建成图之后大概是这样的:

对于上面的数据:答案就是3,3+n,3+2n,中的最小值。

第一种模板:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#define ll long long
#define inf 0x3f3f3f3f
#define pii pair<int, int>
const int mod = 1e9+7;
const int maxn = 5e4 * 42;
using namespace std;
struct node {int to,w,next;} edge[maxn];
int head[maxn], cnt;
int dis[maxn], vis[maxn];
int n, m, s, t, k;
struct Dijkstra
{
    void init()
    {
        memset(head,-1,sizeof(head));
        memset(dis,0x3f,sizeof(dis));
        memset(vis,0,sizeof(vis));
        cnt = 0;
    }
 
    void add(int u,int v,int w)
    {
        edge[cnt].to = v;
        edge[cnt].w = w;
        edge[cnt].next = head[u];
        head[u] = cnt ++;
    }
 
    void dijkstra()
    {
        priority_queue<pii,vector<pii>,greater<pii> > q;
        dis[s] = 0; q.push({dis[s],s});
        while(!q.empty())
        {
            int now = q.top().second;
            q.pop();
            if(vis[now]) continue;
            vis[now] = 1;
            for(int i = head[now]; i != -1; i = edge[i].next)
            {
                int v = edge[i].to;
                if(!vis[v] && dis[v] > dis[now] + edge[i].w)
                {
                    dis[v] = dis[now] + edge[i].w;
                    q.push({dis[v],v});
                }
            }
        }
    }
}dj;
 
int main()
{
    while(~scanf("%d%d%d", &n, &m, &k))
    {
        dj.init(); scanf("%d%d",&s,&t);
        while(m--)
        {
            int u, v, w;
            scanf("%d%d%d",&u, &v, &w);
            for(int i = 0; i <= k; i++)
            {
                dj.add(u + i * n, v + i * n, w);
                dj.add(v + i * n, u + i * n, w);
                if(i != k)
                {
                    dj.add(u + i * n, v + (i + 1) * n, 0);
                    dj.add(v + i * n, u + (i + 1) * n, 0);
                }
            }
        }
        dj.dijkstra(); int ans = inf;
        for(int i = 0; i <= k; i++)
            ans = min(ans, dis[t + i * n]);
 
        printf("%d\n",ans);
    }
}

 第二种方法:

我们把dis数组和vis数组多开一维记录k次机会的信息。

  • dis[ i ][ j ] 代表到达 i 用了 j 次免费机会的最小花费.
  • vis[ i ][ j ] 代表到达 i 用了 j 次免费机会的情况是否出现过.

更新的时候先更新同层之间(即花费免费机会相同)的最短路,然后更新从该层到下一层(即再花费一次免费机会)的最短路。

 

  • 不使用机会 dis[v][c] = min(min,dis[now][c] + edge[i].w);
  • 使用机会 dis[v][c+1] = min(dis[v][c+1],dis[now][c]);

对于数据:

n  =  4,m  =  3, k  =  2

0       1        100

1       2        100

2       3        100

建成图之后大概是这样的:

 第二种模板:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#define ll long long
#define inf 0x3f3f3f3f
#define pii pair<int, int>
const int mod = 1e9+7;
const int maxn = 1e5+7;
using namespace std;
struct node{int to, w, next, cost; } edge[maxn];
int head[maxn], cnt;
int dis[maxn][15], vis[maxn][15];
int n, m, s, t, k;
struct Dijkstra
{
    void init()
    {
        memset(head,-1,sizeof(head));
        memset(dis,127,sizeof(dis));
        memset(vis,0,sizeof(vis));
        cnt = 0;
    }

    void add(int u,int v,int w)
    {
        edge[cnt].to = v;
        edge[cnt].w = w;
        edge[cnt].next = head[u];
        head[u] = cnt ++;
    }

    void dijkstra()
    {
        priority_queue <pii, vector<pii>, greater<pii> > q;
        dis[s][0] = 0;
        q.push({0, s});
        while(!q.empty())
        {
            int now = q.top().second; q.pop();
            int c = now / n; now %= n;
            if(vis[now][c]) continue;
            vis[now][c] = 1;
            for(int i = head[now]; i != -1; i = edge[i].next)
            {
                int v = edge[i].to;
                if(!vis[v][c] && dis[v][c] > dis[now][c] + edge[i].w)
                {
                    dis[v][c] = dis[now][c] + edge[i].w;
                    q.push({dis[v][c], v + c * n});
                }
            }
            if(c < k)
            {
                for(int i = head[now]; i != -1; i = edge[i].next)
                {
                    int v = edge[i].to;
                    if(!vis[v][c+1] && dis[v][c+1] > dis[now][c])
                    {
                        dis[v][c+1] = dis[now][c];
                        q.push({dis[v][c+1], v + (c + 1) * n});
                    }
                }
            }
        }
    }
}dj;

int main()
{
    while(~scanf("%d%d%d", &n, &m, &k))
    {
        dj.init(); scanf("%d%d",&s,&t);
        while(m--)
        {
            int u, v, w;
            scanf("%d%d%d",&u, &v, &w);
            dj.add(u, v, w);
            dj.add(v, u, w);
        }
        dj.dijkstra();
        int ans = inf;
        for(int i = 0; i <= k; i++)
            ans = min(ans, dis[t][i]);
        printf("%d\n", ans);
    }
}
/*
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
*/

例题:P4568 [JLOI2011]飞行路线

展开阅读全文

没有更多推荐了,返回首页