分层图最短路--最通俗易懂的讲解

分层图最短路是指在可以进行分层图的图上解决最短路问题。分层图:可以理解为有多个平行的图。

一般模型是:在一个正常的图上可以进行 k 次决策,对于每次决策,不影响图的结构,只影响目前的状态或代价。一般将决策前的状态和决策后的状态之间连接一条权值为决策代价的边,表示付出该代价后就可以转换状态了。

一般有两种方法解决分层图最短路问题:

  1. 建图时直接建成k+1层。
  2. 多开一维记录机会信息。

当然具体选择哪一种方法,看数据范围吧 。 

第一种方法: 

我们建k+1层图。然后有边的两个点,多建一条到下一层边权为0的单向边,如果走了这条边就表示用了一次机会。

有N个点时,1~n表示第一层,(1+n)~(n+n)代表第二层,(1+2*n)~(n+2*n)代表第三层,(1+i*n)~(n+i*n)代表第i+1层。因为要建K+1层图,数组要开到n * ( k + 1),点的个数也为n * ( k + 1 ) 。

对于数据:

n  =  4,m  =  3, k  =  2

0       1        100

1       2        100

2       3        100

建成图之后大概是这样的:

对于上面的数据:答案就是3,3+n,3+2n,中的最小值。

第一种模板:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#define ll long long
#define inf 0x3f3f3f3f
#define pii pair<int, int>
const int mod = 1e9+7;
const int maxn = 5e4 * 42;
using namespace std;
struct node {int to,w,next;} edge[maxn];
int head[maxn], cnt;
int dis[maxn], vis[maxn];
int n, m, s, t, k;
struct Dijkstra
{
    void init()
    {
        memset(head,-1,sizeof(head));
        memset(dis,0x3f,sizeof(dis));
        memset(vis,0,sizeof(vis));
        cnt = 0;
    }
 
    void add(int u,int v,int w)
    {
        edge[cnt].to = v;
        edge[cnt].w = w;
        edge[cnt].next = head[u];
        head[u] = cnt ++;
    }
 
    void dijkstra()
    {
        priority_queue<pii,vector<pii>,greater<pii> > q;
        dis[s] = 0; q.push({dis[s],s});
        while(!q.empty())
        {
            int now = q.top().second;
            q.pop();
            if(vis[now]) continue;
            vis[now] = 1;
            for(int i = head[now]; i != -1; i = edge[i].next)
            {
                int v = edge[i].to;
                if(!vis[v] && dis[v] > dis[now] + edge[i].w)
                {
                    dis[v] = dis[now] + edge[i].w;
                    q.push({dis[v],v});
                }
            }
        }
    }
}dj;
 
int main()
{
    while(~scanf("%d%d%d", &n, &m, &k))
    {
        dj.init(); scanf("%d%d",&s,&t);
        while(m--)
        {
            int u, v, w;
            scanf("%d%d%d",&u, &v, &w);
            for(int i = 0; i <= k; i++)
            {
                dj.add(u + i * n, v + i * n, w);
                dj.add(v + i * n, u + i * n, w);
                if(i != k)
                {
                    dj.add(u + i * n, v + (i + 1) * n, 0);
                    dj.add(v + i * n, u + (i + 1) * n, 0);
                }
            }
        }
        dj.dijkstra(); int ans = inf;
        for(int i = 0; i <= k; i++)
            ans = min(ans, dis[t + i * n]);
 
        printf("%d\n",ans);
    }
}

 第二种方法:

我们把dis数组和vis数组多开一维记录k次机会的信息。

  • dis[ i ][ j ] 代表到达 i 用了 j 次免费机会的最小花费.
  • vis[ i ][ j ] 代表到达 i 用了 j 次免费机会的情况是否出现过.

更新的时候先更新同层之间(即花费免费机会相同)的最短路,然后更新从该层到下一层(即再花费一次免费机会)的最短路。

 

  • 不使用机会 dis[v][c] = min(min,dis[now][c] + edge[i].w);
  • 使用机会 dis[v][c+1] = min(dis[v][c+1],dis[now][c]);

对于数据:

n  =  4,m  =  3, k  =  2

0       1        100

1       2        100

2       3        100

建成图之后大概是这样的:

 第二种模板:

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <queue>
#include <vector>
#define ll long long
#define inf 0x3f3f3f3f
#define pii pair<int, int>
const int mod = 1e9+7;
const int maxn = 1e5+7;
using namespace std;
struct node{int to, w, next, cost; } edge[maxn];
int head[maxn], cnt;
int dis[maxn][15], vis[maxn][15];
int n, m, s, t, k;
struct Dijkstra
{
    void init()
    {
        memset(head,-1,sizeof(head));
        memset(dis,127,sizeof(dis));
        memset(vis,0,sizeof(vis));
        cnt = 0;
    }

    void add(int u,int v,int w)
    {
        edge[cnt].to = v;
        edge[cnt].w = w;
        edge[cnt].next = head[u];
        head[u] = cnt ++;
    }

    void dijkstra()
    {
        priority_queue <pii, vector<pii>, greater<pii> > q;
        dis[s][0] = 0;
        q.push({0, s});
        while(!q.empty())
        {
            int now = q.top().second; q.pop();
            int c = now / n; now %= n;
            if(vis[now][c]) continue;
            vis[now][c] = 1;
            for(int i = head[now]; i != -1; i = edge[i].next)
            {
                int v = edge[i].to;
                if(!vis[v][c] && dis[v][c] > dis[now][c] + edge[i].w)
                {
                    dis[v][c] = dis[now][c] + edge[i].w;
                    q.push({dis[v][c], v + c * n});
                }
            }
            if(c < k)
            {
                for(int i = head[now]; i != -1; i = edge[i].next)
                {
                    int v = edge[i].to;
                    if(!vis[v][c+1] && dis[v][c+1] > dis[now][c])
                    {
                        dis[v][c+1] = dis[now][c];
                        q.push({dis[v][c+1], v + (c + 1) * n});
                    }
                }
            }
        }
    }
}dj;

int main()
{
    while(~scanf("%d%d%d", &n, &m, &k))
    {
        dj.init(); scanf("%d%d",&s,&t);
        while(m--)
        {
            int u, v, w;
            scanf("%d%d%d",&u, &v, &w);
            dj.add(u, v, w);
            dj.add(v, u, w);
        }
        dj.dijkstra();
        int ans = inf;
        for(int i = 0; i <= k; i++)
            ans = min(ans, dis[t][i]);
        printf("%d\n", ans);
    }
}
/*
5 6 1
0 4
0 1 5
1 2 5
2 3 5
3 4 5
2 3 3
0 2 100
*/

例题:P4568 [JLOI2011]飞行路线

<think>好的,用户让我讲解Java的五个基础知识点:关键字、数据类型、基本运算符、流程控制和数组。首先,我需要确定用户的学习阶段。可能是刚开始学习Java的新手,或者是需要复习基础的人。他们可能对这些概念有初步了解,但想系统性地梳理一遍,或者准备面试、考试。 接下来,我需要考虑如何组织内容,既全面又不冗长。用户提到的每个点都需要分点讲解,结构清晰。比如关键字部分,列出常见的关键字,并解释其功能,但要避免过于深入,保持基础水平。数据类型部分,区分基本类型和引用类型,给出类型分类、内存占用和示例,这样用户能一目了然。 运算符部分,要涵盖各种类型,包括算术、比较、逻辑等,特别是要注意优先级,这对新手来说容易出错。流程控制需要分条件、循环和跳转,每个部分给出语法示例,帮助理解。数组部分要包括声明、初始化、遍历以及多维数组,可能还需要提到常见问题,比如越界异常。 同时,用户可能希望这些知识点之间有联系,比如数据类型如何影响运算符的使用,流程控制如何与数组结合进行循环操作。需要注意在讲解时适当连接这些点,帮助构建完整的知识体系。 另外,用户可能对实际应用场景感兴趣,比如在什么情况下使用特定的数据类型或流程控制结构。比如,在数组部分提到Arrays工具类,这可以引导用户了解更多的实用类库,提升他们的实际操作能力。 还要检查是否有常见的误区需要提醒,比如==和equals的区别,逻辑运算符的短路特性,数组的动态初始化与静态初始化的区别等。这些细节能帮助用户避免常见错误,加深理解。 后,确保语言简洁明了,避免使用过于专业的术语,用通俗易懂的例子和类比,让用户更容易消化这些基础知识。可能需要用代码示例来辅助说明,但代码不宜过多,重点放在解释上。比如在讲解for-each循环时,对比传统for循环,说明其优点和使用场景。 总结下来,我需要将每个知识点分门别类,结构清晰,内容全面但不过于深入,结合实际例子和常见问题,帮助用户巩固Java基础,同时为后续学习打下坚实的基础。</think>以下是Java基础知识的系统讲解,采用分层结构方便理解: --- ### 一、Java关键字及功能(共51个) #### 核心关键字分类: ```java // 数据类型相关 boolean, byte, char, short, int, long, float, double, void // 流程控制 if, else, switch, case, default, while, do, for, break, continue, return // 访问控制 public, protected, private // 类与对象 class, interface, enum, extends, implements, new, this, super, instanceof // 异常处理 try, catch, finally, throw, throws // 修饰符 static, final, abstract, transient, volatile, synchronized, native // 其他重要关键字 package, import, assert, const*, goto*(带*为保留未用) ``` #### 特殊关键字说明: - `strictfp`:保证浮点运算平台一致性 - `assert`:用于断言检查(需启用`-ea`参数) - `enum`:枚举类型声明(JDK5+) --- ### 二、Java数据类型(内存模型+值范围) #### 1. 基本数据类型(8种) | 类型 | 位数 | 默认值 | 取值范围 | 示例 | |----------|------|--------|-----------------------------------|--------------------| | byte | 8 | 0 | -128 ~ 127 | byte b = 100; | | short | 16 | 0 | -32768 ~ 32767 | short s = 30000; | | int | 32 | 0 | -2^31 ~ 2^31-1 | int i = 2147483647;| | long | 64 | 0L | -2^63 ~ 2^63-1 | long l = 100L; | | float | 32 | 0.0f | ±3.4E38(6-7位有效数字) | float f = 3.14F; | | double | 64 | 0.0d | ±1.7E308(15位有效数字) | double d = 3.14; | | char | 16 | '\u0000' | 0 ~ 65535 | char c = 'A'; | | boolean | - | false | true/false | boolean flag = true;| #### 2. 引用数据类型 - 类(如String) - 接口 - 数组 - 枚举 --- ### 三、Java基本运算符(9类运算符) #### 优先级表(从高到低) | 运算符 | 结合性 | |---------------------------|----------| | () [] . | 左→右 | | ! ~ ++ -- +(正) -(负) | 右→左 | | * / % | 左→右 | | + - | 左→右 | | << >> >>> | 左→右 | | < <= > >= instanceof | 左→右 | | == != | 左→右 | | & | 左→右 | | ^ | 左→右 | | | | 左→右 | | && | 左→右 | | || | 左→右 | | ?: | 右→左 | | = += -= *= /= %= &= |= ^= | 右→左 | #### 特殊运算符示例: ```java // 三目运算符 int max = (a > b) ? a : b; // 位运算 int flags = 0b1010; // 二进制表示 int shifted = flags << 2; // 结果为0b101000 // 类型比较 System.out.println("hello" instanceof String); // true ``` --- ### 四、程序流程控制 #### 1. 条件结构 ```java // if-else if阶梯 if(score >= 90) { System.out.println("A"); } else if(score >= 80) { System.out.println("B"); } else { System.out.println("C"); } // switch增强(JDK12+) String result = switch(day) { case 1,2,3,4,5 -> "Weekday"; case 6,7 -> "Weekend"; default -> throw new IllegalArgumentException(); }; ``` #### 2. 循环结构 ```java // 传统for循环 for(int i=0; i<10; i++) { System.out.println(i); } // 增强for循环 int[] nums = {1,2,3}; for(int num : nums) { System.out.println(num); } // while与do-while对比 while(condition) { /* 先判断 */ } do { /* 至少执行一次 */ } while(condition); ``` #### 3. 跳转控制 ```java break label; // 跳出指定标签的循环 continue; // 跳过本次循环 return; // 方法返回 ``` --- ### 五、Java数组(引用类型) #### 1. 数组声明与初始化 ```java // 静态初始化 int[] arr1 = {1,2,3}; // 动态初始化 int[] arr2 = new int[3]; arr2[0] = 10; // 匿名数组 new int[]{4,5,6}; ``` #### 2. 多维数组 ```java // 二维数组 int[][] matrix = { {1,2,3}, {4,5,6} }; // 不规则数组 int[][] triangle = new int[3][]; triangle[0] = new int[1]; triangle[1] = new int[2]; ``` #### 3. 数组工具类 ```java // Arrays类常用方法 Arrays.sort(arr); // 排序 Arrays.binarySearch(arr, key); // 二分查找 Arrays.copyOf(arr, newLength); // 复制数组 Arrays.fill(arr, value); // 填充值 ``` #### 4. 注意事项 - 数组长度固定(使用`length`属性获取) - 索引从0开始 - 访问越界会抛出`ArrayIndexOutOfBoundsException` - 可存储基本类型和对象类型 --- ### 知识图谱关系 ``` 数据类型 → 决定运算符选择 → 影响流程控制 → 终组合成数组操作 ``` 建议通过以下代码综合练习: ```java public class BasicDemo { public static void main(String[] args) { // 数组与循环结合 int[] numbers = {3,1,4,1,5,9}; int sum = 0; for(int num : numbers) { sum += num; } System.out.println("平均值为:" + (sum / numbers.length)); } } ```
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值