Matrix中preXxx,setXxx,postXxx方法的使用

转载文章一:Android中的Matrix,以及set,pre和post的区别

Matrix主要用于对平面进行平移(Translate),缩放(Scale),旋转(Rotate)以及斜切(Skew)操作。
为简化矩阵变换,Android封装了一系列方法来进行矩阵变换;其中包括:
set系列方法:setTranslate,setScale,setRotate,setSkew;设置,会覆盖之前的参数。
pre系列方法:preTranslate,preScale,preRotate,preSkew;矩阵先乘,如M' = M * T(dx, dy)。
post系列方法:postTranslate,postScale,postRotate,postSkew;矩阵后乘,如M' = T(dx, dy) * M。
通过将变换矩阵与原始矩阵相乘来达到变换的目的,例如:
平移(x'=x+tx;y'=y+ty):

缩放(x'=sx*x;y'=sy*y):

旋转(x'=cosβ*x-sinβ*y;y'=sinβ*x+cosβ*y):

选择需要用到如下的三角函数的公式:
①sin(α+β)=sinαcosβ+cosαsinβ
②cos(α+β)=cosαcosβ-sinαsinβ
公式①可以由单位圆方法或托勒密定理推导出来。
推导过程参见:http://blog.sina.com.cn/s/blog_58260f420100c03j.html

斜切(x'=x+k1*y;y'=k2*x+y):

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. //源码文件:external\skia\legacy\src\core\SkMatrix.cpp  
  2.   
  3. #define SK_Scalar1      (1.0f)  
  4. #define kMatrix22Elem   SK_Scalar1  
  5. typedef float   SkScalar;  
  6. #define SkScalarMul(a, b)       ((float)(a) * (b))  
  7.   
  8. enum {  
  9.     kMScaleX, kMSkewX, kMTransX,  
  10.     kMSkewY, kMScaleY, kMTransY,  
  11.     kMPersp0, kMPersp1, kMPersp2  
  12. };  
  13.   
  14. void SkMatrix::reset() {  
  15.     fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; //其值为1  
  16.     fMat[kMSkewX]  = fMat[kMSkewY] =  
  17.     fMat[kMTransX] = fMat[kMTransY] =  
  18.     fMat[kMPersp0] = fMat[kMPersp1] = 0; //其值,全为0  
  19.     fMat[kMPersp2] = kMatrix22Elem; //其值为1  
  20.     this->setTypeMask(kIdentity_Mask | kRectStaysRect_Mask);  
  21. }  
  22.   
  23. void SkMatrix::setTranslate(SkScalar dx, SkScalar dy) {  
  24.     if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) {  
  25.         fMat[kMTransX] = dx; //以新值dx覆盖原值,原值无效了  
  26.         fMat[kMTransY] = dy;  
  27.   
  28.         fMat[kMScaleX] = fMat[kMScaleY] = SK_Scalar1; //其值为1  
  29.         fMat[kMSkewX]  = fMat[kMSkewY] =   
  30.         fMat[kMPersp0] = fMat[kMPersp1] = 0; //其值,全为0  
  31.         fMat[kMPersp2] = kMatrix22Elem; //其值为1  
  32.   
  33.         this->setTypeMask(kTranslate_Mask | kRectStaysRect_Mask);  
  34.     } else {  
  35.         this->reset();  
  36.     }  
  37. }  
  38.   
  39. bool SkMatrix::preTranslate(SkScalar dx, SkScalar dy) {  
  40.     if (this->hasPerspective()) {  
  41.         SkMatrix    m;  
  42.         m.setTranslate(dx, dy);  
  43.         return this->preConcat(m); //矩阵的先乘运算  
  44.     }  
  45.       
  46.     if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) {  
  47.         fMat[kMTransX] += SkScalarMul(fMat[kMScaleX], dx) +  
  48.                           SkScalarMul(fMat[kMSkewX], dy); //先乘,需要矩阵运算过  
  49.         fMat[kMTransY] += SkScalarMul(fMat[kMSkewY], dx) +  
  50.                           SkScalarMul(fMat[kMScaleY], dy);  
  51.   
  52.         this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);  
  53.     }  
  54.     return true;  
  55. }  
  56.   
  57. bool SkMatrix::postTranslate(SkScalar dx, SkScalar dy) {  
  58.     if (this->hasPerspective()) {  
  59.         SkMatrix    m;  
  60.         m.setTranslate(dx, dy);  
  61.         return this->postConcat(m); //矩阵的后乘运算  
  62.     }  
  63.       
  64.     if (SkScalarToCompareType(dx) || SkScalarToCompareType(dy)) {  
  65.         fMat[kMTransX] += dx; //后乘,直接加新值dx即可  
  66.         fMat[kMTransY] += dy;  
  67.         this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);  
  68.     }  
  69.     return true;  
  70. }  
  71.   
  72. bool SkMatrix::preConcat(const SkMatrix& mat) { //矩阵的先乘运算(this在前)  
  73.     // check for identity first, so we don't do a needless copy of ourselves  
  74.     // to ourselves inside setConcat()  
  75.     return mat.isIdentity() || this->setConcat(*this, mat); //矩阵运算  
  76. }  
  77.   
  78. bool SkMatrix::postConcat(const SkMatrix& mat) { //矩阵的后乘运算(this在后)  
  79.     // check for identity first, so we don't do a needless copy of ourselves  
  80.     // to ourselves inside setConcat()  
  81.     return mat.isIdentity() || this->setConcat(mat, *this); //矩阵运算  
  82. }  
Matrix的初始值:
[sx, k1, 0]
[k2, sy, 0]
[0,   0,  1]
setTranslate( 2, 3 )后:
[sx, k1,  2 ]
[k2, sy,  3 ]
[0,   0,  1]
上面set后,再preTranslate( 4, 5 ):
[sx, k1, 2][1, 0, 4]  [sx, k1,  sx*4+k1*5+2 ]
[k2, sy, 3][0, 1, 5]=[k2, sy,  k2*4+sy*5+3 ]
[0,   0,   1][0, 0, 1]  [0,  0,  1]
上面set后,再postTranslate( 4, 5 )后:
[1, 0, 4][sx, k1, 2]  [sx, k1,  2+4 ]
[0, 1, 5][k2, sy, 3]=[k2, sy,  5+3 ]
[0, 0, 1][0,   0,   1]  [0,   0,  1]


转载文章二:Matrix的set,pre,post调用顺序

Matrix调用一系列set,pre,post方法时,可视为将这些方法插入到一个队列.当然,按照队列中从头至尾的顺序调用执行.
其中pre表示在队头插入一个方法,post表示在队尾插入一个方法.而set表示把当前队列清空,并且总是位于队列的最中间位置.当执行了一次set后:pre方法总是插入到set前部的队列的最前面,post方法总是插入到set后部的队列的最后面

例一:
Matrix m = new Matrix();
m.setRotate(45); 
m.setTranslate(80, 80);
只有m.setTranslate(80, 80)有效,因为m.setRotate(45);被清除.

例子二:
Matrix m = new Matrix();
m.setTranslate(80, 80);
m.postRotate(45);
先执行m.setTranslate(80, 80);后执行m.postRotate(45);

例子三:
Matrix m = new Matrix();
m.setTranslate(80, 80);
m.preRotate(45);
先执行m.setTranslate(80, 80);后执行m.preRotate(45);

例子四:
Matrix m = new Matrix();
m.preScale(2f,2f);    
m.preTranslate(50f, 20f);   
m.postScale(0.2f, 0.5f);    
m.postTranslate(20f, 20f);  
执行顺序:m.preTranslate(50f, 20f)-->m.preScale(2f,2f)-->m.postScale(0.2f, 0.5f)-->m.postTranslate(20f, 20f)
注意:m.preTranslate(50f, 20f)比m.preScale(2f,2f)先执行,因为它查到了队列的最前端.

例子五:
Matrix m = new Matrix();
m.postTranslate(20, 20);   
m.preScale(0.2f, 0.5f);
m.setScale(0.8f, 0.8f);   
m.postScale(3f, 3f);
m.preTranslate(0.5f, 0.5f);
执行顺序:m.preTranslate(0.5f, 0.5f)-->m.setScale(0.8f, 0.8f)-->m.postScale(3f, 3f)
注意:m.setScale(0.8f, 0.8f)清除了前面的m.postTranslate(20, 20)和m.preScale(0.2f, 0.5f);  


通过上述两篇的文章,相信对Matrix的使用从原理到实践都不成问题了!感谢开源精神。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值