SRN:Towards Accurate Scene Text Recognition with Semantic Reasoning Networks,利用语义推理网络实现准确的场景文本识别。
1、模型过程
(1)输入图像(B,C, H, W),C一般为1(灰度图)或3(RGB)。
(2)FeatureExtraction特征提取,采用Resnet50,提取的特征维度为(B,512, 1, w),h为W/4。那么可检测的文本序列长度为w。特征提取后通道数为512,即每个文字的特征为512。这个变换与CRNN的CNN卷积提取特征的思路一致。
(3)SequenceModeling序列化:采用两层Transformer Encoder进行编码。首先将特征提取的维度由(B,512,1,w)转换为(B,w,512),然后经过两层Transformer Encoder,对输入特征加入注意力和位置编码信息,重新获得序列化后的特征。
(4)SRN_Decoder特征解析:
1)PVAM(并行视觉注意力模块):将w个文字的读写顺序的embeding(B,w,512)与序列化后的Transformer Encoder特征,采用全连接后相加的方式进行融合(B, w,512)。那么融合后的512维特征里包含了读写顺序,通过(512, w)的全连接和softmax得到一个(B, w,w)矩阵,用这个矩阵来作为特征的权重矩阵。即,每个字符的512维特征中的每一个特征将由w个字符共同决定。可以称这一步为特征内的注意力。权重矩阵乘以Transformer Encoder特征即可得到PVAM模块的输出(B, w,512)g_output,最后通过全连接转换为(B, w,num_classs)转换为对每个字符的预测e_out。
2)GSRM(全局语义推理模块):根据e_out,选择每个字符所属类别概率最大的类作为识别结果(B, w)。也就是根据PVAM可以初步得到文字识别结果。计算识别结果的embeding(B,w,512),经Transformer Encoder重新编码(B,w,512)s,最后通过全连接转换为(B, w,num_classs)转换为对每个字符的预测s_out。
3)将PVAM模块输出g_output与GSRM模块的输出s相加融合(B,w,512)f,最后通过全连接转换为(B, w,num_classs)转换为对每个字符的预测f_out.
4)根据f_out即可利用概率最大的类别进行文字识别。
5)总结:先利用字符读写顺序对序列特征进行重新编码获得初步识别结果,再将初步识别结果重新融入到序列特征中,相当于从整体上看看是否正确,是否需要进行微调,然后再次获得识别结果。
以上为SRN的个人理解,其他相关参考有:

被折叠的 条评论
为什么被折叠?



