本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
点云最远点采样FPS(Farthest Point Sampling)方法的优势是可以尽可能多地覆盖到全部点云,但是需要多次计算全部距离,因而属于复杂度较高的、耗时较多的采样方法。
1 FPS采样步骤
FPS采样步骤为:
(1)选择一个初始点:可以随机选择,也可以按照一定的规则来选取。如果随机选取那么每次得到的结果都是不一样的,反之每次得到的结果就是一致的。
(2)计算所有点与(1)中点的距离,选择距离最大的值作为新的初始点。
(3)重复前两步过程,知道选择的点数量满足要求。
由于(2)中每次选择的距离都是最大的,所以迭代的过程距离最大值会逐渐减少。这也就是下面代码中mask选取的依据。如果把加这一个限制,那么点会被来回重复选到。
2 python源码
# -*- coding: utf-8 -*-
""
本文介绍了点云采样的FPS(最远点采样)方法,详细阐述了FPS的采样步骤,包括随机选择初始点、计算点间距离并选择最远点等,强调了该方法的高复杂度和耗时特性。同时,提供了Python实现源码,并链接到《python三维点云从基础到深度学习》专栏,供读者深入学习。
订阅专栏 解锁全文
6504

被折叠的 条评论
为什么被折叠?



