本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
PointPillars是一种基于体素的三维目标检测算法,发表在CVPR2019《PointPillars: Fast Encoders for Object Detection from Point Clouds》。它的主要思想是把三维点云转换成2D伪图像以便用2D目标检测的方式进行目标检测。PointPillars在配置为Intel i7 CPU和1080ti GPU上的预测速度为62Hz,在无人驾驶领域中常常能够使用上它,是一个落地且应用广泛的一个3D快速目标检测网络。
1 源码与输入数据
源码采用的是mmdetection3d框架中的second模型。mmdetection3d安装和调试验证可参考本博客之前的专栏,里面有详细介绍。
数据采用的是kitti,为了快速进行算法调试、训练、评估和验证,以及快速下载,我制作了一个mini kitti数据集,数据集的文件目录结构与完整KITTI数据集保持一致。其中,小型的KITTI数据集,即 mini kitti保存了20个训练样本和5个测试样本。下载地址为:
本文深入探讨PointPillars,一种基于体素的三维目标检测算法,将点云转换为2D伪图像进行检测。在Intel i7 CPU和1080ti GPU上,其预测速度可达62Hz。使用mmdetection3d框架和mini KITTI数据集进行演示,数据预处理、模型结构和推理过程详述。
订阅专栏 解锁全文
1687

被折叠的 条评论
为什么被折叠?



