CINTA作业六:拉格朗日定理

本文详细探讨了群论中的陪集概念及其性质,结合拉格朗日定理,阐述了如何利用这些理论来研究有限群的结构。证明了陪集相等的充要条件,并讨论了子群与陪集的关系,特别是当子群为真子群时,其为循环群的性质。此外,还介绍了费尔马小定理和欧拉定理在模运算中的应用。
摘要由CSDN通过智能技术生成

陪集与拉格朗日定理

提示:通过群元素与群的操作,得到一个新的群,称为陪集
   利用陪集的性质,又可通过拉格朗日定理进一步研究有限群的性质
在这里插入图片描述
在这里插入图片描述



一、证明 8.1

在这里插入图片描述
解:
  (1)充分性:

     如果 g 1 g_1 g1H = g 2 g_2 g2H

     则存在 h 1 h_1 h1 h 2 h_2 h2 ∈ \in H, 使得 g 1 g_1 g1 h 1 h_1 h1 = g 2 g_2 g2 h 2 h_2 h2

     即得 h 1 h_1 h1 = g 1 − 1 g_1^{-1} g11 g 2 g_2 g2 h 2 h_2 h2

      ∴ \therefore g 1 − 1 g_1^{-1} g11 g 2 g_2 g2 ∈ \in H


  (2)必要性:

     如果 g 1 − 1 g_1^{-1} g11 g 2 g_2 g2 ∈ \in H

     则有 g 2 g_2 g2 ∈ \in g 1 g_1 g1 H

     所以, 根据命题 8.1 得 g 1 g_1 g1H = g 2 g_2 g2H


    综上所述,若 G 是群,H 是 G 的子群。任取 g 1 g_1 g1, g 2 g_2 g2 ∈ \in G,则 g 1 g_1 g1H = g 2 g_2 g2H 当且仅当 g 1 − 1 g_1^{-1} g11 g 2 g_2 g2 ∈ \in H


二、证明 8.3

在这里插入图片描述
解:如果 g ∈ \in H, 则 gH = Hg = H
  如果 g ∉ \notin / H, 则 gH ∉ \notin / H, Hg ∉ \notin / H
         又因为 [G:H] = 2
         所以 gH = Hg, 且他们都属于G - H


三、证明 8.4

在这里插入图片描述
解:由题意值知, H在G上至少有2个不相同的左陪集, 即[G:H] ≥ \geq 2
   根据拉格朗日定理知,|G| / / /|H| = [G:H] ≥ \geq 2
   即 |H| ≤ \leq |G| / / / 2


四、证明 8.5

在这里插入图片描述
解:设 H 为 G 的真子群
  所以对于任意 h ∈ \in H, 必有 h ∈ \in G
  由推论 8.1 知,h 的阶必然整除群 G 的阶,即 ord(g) | pq
   ∵ \because p 和 q 都是素数
   ∴ \therefore h 的阶为 p 或 q
   ∴ \therefore H 的阶为 p 或 q
  由推论 8.2 知,,H 为素数阶有限阶群,则 H 是循环群
  所以说, G 的任意真子群都是循环群


五、证明 8.7

在这里插入图片描述
费尔马小定理:

   解:现有整数模 p 下的乘法群 Z p ∗ Z_p^* Zp

     设 a ∈ \in Z p ∗ Z_p^* Zp, 由推论 8.1 得 ord (a) | p-1

     所以, a p − 1 a^{p-1} ap1 = a n ∗ o r d ( a ) a^{n*ord(a)} anord(a) = 1(mod p)

欧拉定理:

   解:现有整数模 p 下的乘法群 Z p ∗ Z_p^* Zp

     设 a ∈ \in Z p ∗ Z_p^* Zp, 由推论 8.1 得 ord (a) | ϕ \phi ϕ(n)

     所以, a ϕ ( n ) a^{ϕ(n)} aϕ(n)= a n ∗ o r d ( a ) a^{n*ord(a)} anord(a) = 1(mod p)


总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值