Samuel_0
码龄8年
关注
提问 私信
  • 博客:105,275
    105,275
    总访问量
  • 20
    原创
  • 1,016,653
    排名
  • 22
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-01-04
博客简介:

sun___M的博客

查看详细资料
个人成就
  • 获得81次点赞
  • 内容获得26次评论
  • 获得236次收藏
  • 代码片获得101次分享
创作历程
  • 1篇
    2021年
  • 3篇
    2020年
  • 2篇
    2019年
  • 16篇
    2018年
成就勋章
TA的专栏
  • 机器学习知识点
    1篇
  • Python
    4篇
  • Keras
    11篇
  • 可视化
    2篇
  • Python数据挖掘
    2篇
  • CRF
    1篇
  • NLP
    2篇
  • 安装过程总结
  • 电脑难题
    2篇
  • 机器学习
兴趣领域 设置
  • 人工智能
    自然语言处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

使用transformers库中的convert_pytorch_checkpoint_to_tf,转换pytorch的bert模型成TF格式

可以使用convert_pytorch_checkpoint_to_tf.py将pytorch版本的 bert模型转换为TF版本的bert模型,不过需要注意的是需要将程序进行一定的修改:原始代码: model = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path),
原创
发布博客 2021.12.28 ·
1678 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python多个列表对应项相加并且除以同一个数——Numpy的使用

import numpy as npa = [1,2,3]b = [2,3,4]c = [3,4,5]l1 = np.sum([a,b,c], axis = 0)print(l1)l1 = l1 / 200.0print(l1)l1 = list(l1)print(l1)结果为:[ 6 9 12][0.03 0.045 0.06 ][0.03, 0.045, 0.06]
原创
发布博客 2020.10.27 ·
2196 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

pycharm调试报错,this application failed to start because。。。。。

在当前环境中安装pyQt5这个包,解决了问题pip install pyQt5-ihttp://pypi.douban.com/simple--trusted-hostpypi.douban.com
原创
发布博客 2020.07.29 ·
2746 阅读 ·
4 点赞 ·
4 评论 ·
7 收藏

DataFrame的ix方法

关于Pandas——loc、iloc、ix 函数区别和用法,可见博客:https://blog.csdn.net/u012736685/article/details/86610946这里只是码一下, ix方法是包含首尾的,示例如下:print(data_set1[['Value']].ix[0:3, :])其输出为: Value0 2.8140251 2.7829552 2.7259733 2.794768共四行...
原创
发布博客 2020.05.20 ·
6507 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

沈阳公交地铁数据.zip

发布资源 2019.08.01 ·
zip

Youtube social network and ground-truth communities.zip

发布资源 2019.08.01 ·
zip

Brazil_airport_network.txt

发布资源 2019.08.01 ·
txt

international-airline-passengers.zip

发布资源 2019.08.01 ·
zip

机器学习实战:基于Scikit-Learn和TensorFlow文档+数据+代码综合.zip

发布资源 2019.07.10 ·
zip

micro和macro F1 score 的区别——转自网络

上述回答来源于网址——http://sofasofa.io/forum_main_post.php?postid=1001112讲解的很详细,码一下
转载
发布博客 2019.06.17 ·
1145 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

解决Win10系统电脑使用耳机听歌、看视频、看网页只有伴奏背景音没有人声的方法

突然就遇到了这个问题,查了好久好多办法都试了终于让我找到一个可行的方法,Mark一下——http://www.ilovext.com/jc/win10/117.html亲测有效
原创
发布博客 2019.05.27 ·
10625 阅读 ·
5 点赞 ·
2 评论 ·
3 收藏

keras-contrib包安装以及kerasBi_LSTM

keras-contrib 安装:(pip install git+https://www.github.com/farizrahman4u/keras-contrib.git)码一下,学习学习  原文见:https://blog.csdn.net/qq_16912257/article/details/78969966
转载
发布博客 2018.12.10 ·
2643 阅读 ·
1 点赞 ·
3 评论 ·
1 收藏

Python数据挖掘学习——鸢尾花分类、OneR算法

《Python数据挖掘入门与实践》第一章内容,实现一个简单的分类处理,实现OneR算法。OneR算法的思路很简单,它根据已有的数据中,具有相同特征值的个体最可能属于哪个类别进行分类。OneR也就是One Rule的缩写,即“一条规则”,表示我们只选取特征中分类效果最好的一个作为分类的依据。虽然这个算法十分的简单,但是在很多真实数据集上却有着不凡的表现。算法首先遍历每个特征的每个取值,对于每个特...
原创
发布博客 2018.12.10 ·
1839 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

Python数据挖掘学习——亲和性分析

最近了解了一些Python数据挖掘方面的内容,主要学习了《Python数据挖掘入门与实践》这本书的内容,在这里对书中的内容以及我遇到的一些问题进行整理。数据挖掘旨在让计算机根据已有的数据作出决策。数据挖掘的第一步一般是创建数据集,数据集主要包括:(1)样本:表示真实世界中的物体(2)特征:描述数据集中样本学习的第一步接触的就是亲和性分析,亲和性分析是通过样本个体之间的相似度确定...
原创
发布博客 2018.12.10 ·
853 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

《Python数据挖掘入门与实践》第一节商品购买数据集

发布资源 2018.12.10 ·
txt

NetworkX(1)——可视化测试篇

这一系列博客是用来总结使用NetworkX包来进行网络图可视化的学习过程,首先第一篇是使用NetworkX来生成随机网络结构的可视化展示,属于基本操作。示例学习于余本国老师的书。代码如下:import matplotlib.pyplot as pltimport networkx as nxG = nx.random_geometric_graph(200,0.125)pos = ...
原创
发布博客 2018.11.26 ·
2374 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

matplotlib可视化初体验

这篇博客主要是总结一下最近进行的matplotlib可视化实验,内容主要来自于官方文档的实例。(1)首先最简单的——圆形散点图:import matplotlib.pyplot as pltimport numpy as np#绘制一个圆形散点图t = np.arange(1, 10, 0.05)x = np.sin(t)y = np.cos(t)#定义一个图像窗口plt....
原创
发布博客 2018.11.26 ·
506 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

国际旅行人数预测——使用LSTM

时间序列问题增加了输入变量之间的序列依赖性,这样大大提升了模型的复杂程度。LSTM是循环神经网络的一种,可以成功地训练架构非常复杂的深度学习模型,用于处理时间序列问题。LSTM对输入数据的尺度十分敏感,特别是使用sigmoid(这是默认的)或者tanh作为激活函数的时候。下面代码中使用Scikit-Learn中的MinMaxScaler预处理类对数据集进行归一化处理,将数据缩放到0——1。...
原创
发布博客 2018.11.09 ·
3544 阅读 ·
3 点赞 ·
4 评论 ·
29 收藏

国际旅行人数预测——使用多层感知器

这个例子是使用多层感知器来处理时间序列问题,例子来源于魏贞原老师的书。数据集使用的是国际旅行旅客人数数据集(international-airline-passengers)数据集下载:国际旅行旅客人数数据集(international-airline-passengers)利用matplotlib,我们先看一下实际数据的变化趋势。之后构建一个仅有一个隐藏层的多层感知器模型,并...
原创
发布博客 2018.11.05 ·
2003 阅读 ·
2 点赞 ·
1 评论 ·
4 收藏

国际旅行旅客人数数据集(international-airline-passengers)

发布资源 2018.11.05 ·
csv
加载更多