Question:
Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ? b ? c ? d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
Anwser 1: O(n^3)
class Solution {
public:
vector<vector<int> > fourSum(vector<int> &num, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int len = num.size();
vector< vector<int> > ret;
if(len < 4) return ret;
vector<int> num2;
num2.assign(num.begin(), num.end());
sort(num2.begin(), num2.end());
vector<int> tmpRet(4);
tmpRet[0] = num2[0] - 1;
for(int i = 0; i < len - 3; i++){
if(tmpRet[0] == num2[i]) continue;
tmpRet[0] = num2[i];
tmpRet[1] = num2[i+1] - 1;
for(int j = i + 1; j < len - 2; j++){
if(tmpRet[1] == num2[j]) continue;
tmpRet[1] = num2[j];
int l = j + 1;
int r = len - 1;
while(l < r){
if(tmpRet[0] + tmpRet[1] + num2[l] + num2[r] == target){
tmpRet[2] = num2[l];
tmpRet[3] = num2[r];
ret.push_back(tmpRet);
while(num2[++l] == num2[l-1] && l < r);
while(num2[--r] == num2[r+1] && l < r);
} else if(tmpRet[0] + tmpRet[1] + num2[l] + num2[r] < target){
l++;
} else {
r--;
}
}
}
}
}
};
参考推荐: