【学习笔记】关于最大公约数(gcd)的定理

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/suncongbo/article/details/82935140

结论1

gcd(xa1,xb1)=xgcd(a,b)1\gcd(x^a-1,x^b-1)=x^{\gcd(a,b)}-1
证明:
采用数学归纳法。
a=kb+pa=kb+p, 则有gcd(xa1,xb1)=gcd(xkb+p1,xb1)=gcd(xp(xkb1)+xp1,xb1)=gcd(xp1,xb1)=gcd(xb1,x(amod  b)1)\gcd(x^a-1,x^b-1)=\gcd(x^{kb+p}-1,x^b-1)=\gcd(x^p(x^{kb}-1)+x^p-1,x^b-1)=\gcd(x^p-1,x^b-1)=\gcd(x^b-1,x^{(a\mod b)}-1).
中间一步利用到了如下结论: (x1)(xk1)(x-1)|(x^k-1), 证明直接因式分解: xk1=(x1)(i=0k1xi)x^k-1=(x-1)(\sum^{k-1}_{i=0} x_i)

结论2

gcd(Fib(a),Fib(b))=Fib(gcd(a,b))\gcd(Fib(a),Fib(b))=Fib(\gcd(a,b))
其中Fib(x)Fib(x)为Fibonacci数列第xx项。
证明:
首先证明一个结论: Fib(a+b)=Fib(a1)Fib(b)+Fib(a)Fib(b+1)Fib(a+b)=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)
采用数学归纳法: b=1,Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a1)=Fib(a1)Fib(1)+Fib(a)Fib(2)b=1, Fib(a+b)=Fib(a+1)=Fib(a)+Fib(a-1)=Fib(a-1)Fib(1)+Fib(a)Fib(2)
b=2,Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a1)=Fib(a1)Fib(2)+Fib(a)Fib(3)b=2, Fib(a+b)=Fib(a+2)=Fib(a+1)+Fib(a)=2Fib(a)+Fib(a-1)=Fib(a-1)Fib(2)+Fib(a)Fib(3)
对于更大的bb, 假设有结论对b1,b2b-1, b-2成立,则Fib(a+b)=Fib(a+b1)+Fib(a+b2)=Fib(a1)Fib(b1)+Fib(a)Fib(b)+Fib(a1)Fib(b2)+Fib(a)Fib(b1)=Fib(a1)(Fib(b2)+Fib(b1))+Fib(a)(Fib(b1)+Fib(b))=Fib(a1)Fib(b)+Fib(a)Fib(b+1)Fib(a+b)=Fib(a+b-1)+Fib(a+b-2)=Fib(a-1)Fib(b-1)+Fib(a)Fib(b)+Fib(a-1)Fib(b-2)+Fib(a)Fib(b-1)=Fib(a-1)(Fib(b-2)+Fib(b-1))+Fib(a)(Fib(b-1)+Fib(b))=Fib(a-1)Fib(b)+Fib(a)Fib(b+1)
因此假设成立。
然后考虑如何证明gcd\gcd: 首先gcd(Fib(n),Fib(n1))=1\gcd(Fib(n),Fib(n-1))=1 (数学归纳同样可证),然后不妨设a>ba>b, 依然可以数学归纳证明,假设上式对于a,ba,b成立,则gcd(Fib(a+b),Fib(a))=gcd(Fib(a1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=gcd(Fib(a1)Fib(b),Fib(a))=gcd(Fib(b),Fib(a))=Fib(gcd(a,b))=Fib(gcd(a+b,a))\gcd(Fib(a+b),Fib(a))=\gcd(Fib(a-1)Fib(b)+Fib(a)Fib(b+1),Fib(a))=\gcd(Fib(a-1)Fib(b),Fib(a))=\gcd(Fib(b),Fib(a))=Fib(\gcd(a,b))=Fib(\gcd(a+b,a)).
证毕。
推广: 由于f(a+b)=f(a1)f(b)+f(a)f(b+1)f(a+b)=f(a-1)f(b)+f(a)f(b+1)对多种能表示成f(n)=af(n1)+bf(n2),(gcd(a,b)=1)f(n)=af(n-1)+bf(n-2), (\gcd(a,b)=1)的递推关系式都适用,因此对于此类关系式都有gcd(f(a),f(b))=f(gcd(a,b))\gcd(f(a),f(b))=f(\gcd(a,b)).

展开阅读全文

没有更多推荐了,返回首页