sunflower_sara的机器学习园地

记录学习深度学习、机器学习过程中遇到的问题

项目中预测系统演示

界面:   发病率:千分之90 病死率:千分之6.8 转移率:PTC的 CLNM率约12.0%~74.5%,LLNM率约30.5%~62.7%。PTC还可能发生跳跃性淋巴结转移,约6.8%~14.3%   视频演示 https://v.youku.com/v_show/id_XM...

2018-07-15 18:11:17

阅读数 247

评论数 2

博主发表和投稿的文章

欢迎交流!   已发表 Tongtong Liu#, Fengxi Ge#, Jinhua Yu*, Yi Guo, Ligang Cui*. Comparison of the Application of B-Mode and Strain Elastography Ultrasound...

2018-07-15 17:51:29

阅读数 260

评论数 0

cnn中关于平均池化和最大池化的理解

链接:https://www.zhihu.com/question/23437871/answer/24696910 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。   接触到pooling主要是在用于图像处理的卷积神经网络中,但随着深层神经网络的发展,pool...

2018-07-31 22:39:47

阅读数 19714

评论数 0

视觉分类任务中处理不平衡问题的loss比较

https://blog.csdn.net/weixin_35653315/article/details/78327408

2018-07-31 22:34:05

阅读数 101

评论数 0

深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

  标准梯度下降法: 汇总所有样本的总误差,然后根据总误差更新权值   SGD随机梯度下降: mini  batch代替全部样本 曲面的某个方向更加陡峭的时候会被困住 Xt+1=Xt-α Δf(x1) 随机抽取一个样本误差,然后更新权值 (每个样本都更新一次权值,可能造成的误差比较...

2018-07-31 22:26:23

阅读数 1816

评论数 0

特征选择之遗传算法

遗传算法的优点: 1. 与问题领域无关切快速随机的搜索能力。 2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,robust. 3. 搜索使用评价函数启发,过程简单 4. 使用概率机制进行迭代,具有随机性。 5. 具有可扩展性,容易与其他算法结合。 6. 遗传算法具有良好的全局...

2018-07-31 22:11:08

阅读数 3605

评论数 0

迁移学习全面理解

目录 目标和本质 分类 迁移学习全面概述:从基本概念到相关研究 什么是迁移学习? 什么使得迁移学习与众不同呢? 迁移学习的定义 迁移学习的场景 迁移学习的应用 从模拟中学习 适应到新的域 跨语言迁移知识 迁移学习的方法 使用预训练的 CNN 特征 理解卷积神经网络 学...

2018-07-31 22:10:20

阅读数 1928

评论数 0

机器学习中如何选择分类器

机器学习中如何选择分类器   在机器学习中,分类器作用是在标记好类别的训练数据基础上判断一个新的观察样本所属的类别。分类器依据学习的方式可以分为非监督学习和监督学习。非监督学习顾名思义指的是给予分类器学习的样本但没有相对应类别标签,主要是寻找未标记数据中的隐藏结构。,监督学习通过标记的训练数据推...

2018-07-31 21:33:43

阅读数 631

评论数 0

特征共线性

转载自https://blog.csdn.net/o0xgw0o/article/details/76432117   多重共线性 1.概念: 多重共线性是指自变量之间存在一定程度的线性相关,会给变量对模型的贡献性带来影响。即若有两个变量存在共线性,在相互作用计算后,其一的变量的影响会相对...

2018-07-31 21:29:00

阅读数 1503

评论数 0

少数据量情况下深度学习模型效果的提升

数据量少的情况下,eg.450例图像 收集更多的数据 数据增强 预训练权重,即可以用迁移学习fine-turn的方法进行训练   效果不好的情况下有以下改进方法: 1.数据处理 数据平衡 效果不好,是因为数据量太少,采样很不平衡。 首先要标签平衡(一个batch里对阳性和阴性样本...

2018-07-30 20:24:48

阅读数 2788

评论数 0

神经网络基础问题

目录 神经网络基础问题 1.Backpropagation 2.梯度消失、梯度爆炸  如何防止梯度消失? 如何防止梯度爆炸? 3.常用激活函数比较 1)什么是激活函数 2)为什么要用 3)都有什么 (1) sigmoid函数 (2) Tanh函数 (3) ReLU (4)...

2018-07-26 23:28:17

阅读数 557

评论数 0

深度学习 发展 优缺点

神经网络的发展经历了3次大的转折。由于早期的计算资源的限制,以及数据量不足,导致前2个时期提出的神经网络,大多规模很小,而且在一定程度上还不如传统的统计机器学习方法,而且神经网络的结构相对简单,因此并没有体现出神经网络的潜在价值。 在07年,hitton提出了利用自编码器来stack by st...

2018-07-26 22:46:11

阅读数 1022

评论数 0

支持向量机的核函数及其选择

目录          一、支持向量机与核函数 二、几种常用的核函数: 1.线性核(Linear Kernel) 2.多项式核(Polynomial Kernel) 3.径向基核函数(Radial Basis Function)/ 高斯核(Gaussian Kernel) 4.Sigm...

2018-07-26 21:55:54

阅读数 7026

评论数 0

数据增强方法总结

转载 https://blog.csdn.net/Iriving_shu/article/details/78762567 数据增强主要是为了减少网络的过拟合现象,通过对训练图片进行变换可以得到泛化能力更强的网络,更好的适应应用场景。 方法 常用的数据增强方法有: 旋转 | 反射变换(Ro...

2018-07-26 21:09:50

阅读数 514

评论数 0

图像分割的主要算法

图像分割的主要算法: 1.基于阈值的分割方法 2.基于边缘的分割方法 3.基于区域的分割方法 4.基于聚类分析的图像分割方法 5.基于小波变换的分割...

2018-07-26 20:25:42

阅读数 739

评论数 0

最小外接矩形

1.求凸包 https://blog.csdn.net/sunflower_sara/article/details/81222376   2.求最小外接矩形 对于多边形 P 的一个外接矩形存在一条边与原多边形的边共线。 不仅不必去检测所有可能的方向, 而且只需要检测与多边形边数相等数量...

2018-07-26 16:22:19

阅读数 1591

评论数 0

求凸包

原文: https://www.cnblogs.com/aiguona/p/7232243.html   Graham扫描法 时间复杂度:O(n㏒n)  思路:Graham扫描的思想是先找到凸包上的一个点,然后从那个点开始按逆时针方向逐个找凸包上的点,实际上就是进行极角排序,然后对其查询使...

2018-07-26 16:21:39

阅读数 363

评论数 0

常用的优化算法:梯度下降法,牛顿法,拟牛顿法,共轭梯度法

目录 0.几个数学概念 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) 3. 共轭梯度法(Conjugate Gradient) 4. 启发式优化方法 ...

2018-07-26 10:20:22

阅读数 1453

评论数 0

模型评价(AUC,ROC曲线,ACC, 敏感性, 特异性,精确度,召回率,PPV, NPV, F1)

  目录 混淆矩阵 精确率 / precision / PPV / 查准率 召回率 / Recall / True positive rate / TPR / 灵敏度 /  敏感性 / sensitive/ 查全率 ROC曲线 AUC(Area under the ROC curve)...

2018-07-26 10:04:33

阅读数 6685

评论数 0

bagging与boosting

bagging与boosting区别   集成学习 集成学习通过构建并结合多个学习器来完成学习任务.只包含同种类型的个体学习器,这样的集成是“同质”的;包含不同类型的个体学习器,这样的集成是“异质”的.集成学习通过将多个学习器进行结合,常可获得比单一学习器显著优越的泛化性能. 根据个体学习...

2018-07-26 09:37:00

阅读数 219

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭