HDU 1863 畅通工程 (最小生成树--Kruscal、Prim)

本文详细介绍了使用Prim算法和Kruskal算法解决最小生成树问题的方法,并提供了完整的代码实现。通过对两种算法的具体步骤进行解析,帮助读者理解如何找到连接所有节点的最小代价路径。
Description

给出N条公路和M个村庄以及每条公路的造价,求联通各个村庄的的最小的造价。

Input

测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。

Output

对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。

Sample Input

3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100

Sample Output

3
?

Solution

模板题
1. Prim算法,构造距离矩阵。
2. Kruscal,构造边。

code1
//Prim模板
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>

using namespace std;

const int maxn = 110, INF = 0x3f3f3f3f;
int N, M;
int cost[maxn][maxn], minicost[maxn];
bool used[maxn];

void init(int n, int m)
{
    for (int i = 1; i <= m; i++)
    {
        used[i] = false;
        for (int j = 1; j <= m; j++)
        {
            if (i == j)
                cost[i][j] = 0;
            else
                cost[i][j] = INF;
        }
    }
}

int prim()
{
    for (int i = 1; i <= M; i++)
        minicost[i] = cost[1][i];
    used[1] = true;
    int ans = 0;
    for (int i = 2; i <= M; i++)
    {
        int index = -1;
        int minic = INF;
        for (int j = 1; j <= M; j++)
            if (!used[j] && minicost[j] < minic)
                index = j, minic = minicost[j];
        if (index == -1)
            return 0;
        used[index] = true;
        ans += minic;
        for (int k = 1; k <= M; k++)
            if (!used[k])
                minicost[k] = min(minicost[k], cost[index][k]);
    }
    return ans;
}

int main()
{
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    while (~scanf("%d%d", &N, &M) && N)
    {
        init(N, M);
        for (int i = 1; i <= N; i++)
        {
            int t1, t2, t3;
            scanf("%d%d%d", &t1, &t2, &t3);
            cost[t1][t2] = cost[t2][t1] = t3;
        }
        int ans = prim();
        if (ans == 0)
            printf("?\n");
        else
            printf("%d\n", ans);
    }
    return 0;
}
code2
//Kruscal
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>

using namespace std;

struct edge
{
    int u, v, w;
};

int pre[110], M, N;
edge edges[50010];

void init(int N, int M)
{
    for (int i = 1; i <= M; i++)
        pre[i] = i;
}

int find(int x)
{
    if (x == pre[x])
        return x;
    return pre[x] = find(pre[x]);
}

void unite(int i, int j)
{
    if (find(i) != find(j))
        pre[j] = i;
}

bool cmp(edge a, edge b)
{
    return a.w < b.w;
}

int main()
{

    // freopen("in.txt", "r", stdin);
    while (~scanf("%d%d", &N, &M) && N)
    {
        init(N, M);
        for (int i = 1; i <= N; i++)
            scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w);
        sort(edges + 1, edges + 1 + N, cmp);
        int ans = 0;
        for (int i = 1; i <= N; i++)
        {
            if (find(edges[i].u) != find(edges[i].v))
            {
                unite(edges[i].u, edges[i].v);
                ans += edges[i].w;
            }
        }
        int flag = false;
        for (int i = 2; i <= M; i++)
        {
            if (find(1) != find(i))
            {
                flag = true;
                break;
            }
        }
        if (flag)
            printf("?\n");
        else
            printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值