Oozie是一个工作流引擎服务器,用于运行Hadoop Map/Reduce和Pig 任务工作流.同时Oozie还是一个Java Web程序,运行在Java Servlet容器中,如Tomcat.
Oozie工作流中拥有多个Action,如Hadoop Map/Reuce job,Hadoop Pig job等,所有的Action以有向无环图(DAG Direct Acyclic Graph)的模式部署运行.所以在Action的运行步骤上是有方向的,只能上一个Action运行完成后才能运行下一个Action.
Oozie工作流通过HPDL(一种通过XML自定义处理的语言,类似JBOSS JBPM的JPDL)来构造.
Oozie工作流中的Action在运程系统运行如(Hadoop,Pig服务器上).一旦Action完成,远程服务器将回调Oozie的接口并通知Action已经完成,这时Oozie又会以同样的方式执行工作流中的下一个Action,直到工作流中所有Action都完成(完成包括失败)
Oozie工作流中包含可控制的工作流节点(control flow node)和Action节点(action node).
Control flow node其实可以理解为Oozie的语法,比如可以定义开始(start),结束(end),失败(fail)节点.开始节点就表示从该节点开始运行.同时也提供一种机制去控制工作流的执行过程,如选择(decision),并行(fork),join节点.
Oozie工作流提供各种类型的Action用于支持不同的需要,如Hadoop Map/Reduce,Hadoop File System,Pig,SSH,HTTP,Email,Java,以及Oozie子流程.Oozie也支持自定义扩展以上各种类型的Action .
Oozie工作流允许自定义参数,如${inputDir}.
WordCount Workflow Example:
工作流图:
workflow.xml
- <workflow-app name='wordcount-wf' xmlns="uri:oozie:workflow:0.1">
- <start to='wordcount'/>
- <action name='wordcount'>
- <map-reduce>
- <job-tracker>${jobTracker}</job-tracker>
- <name-node>${nameNode}</name-node>
- <configuration>
- <property>
- <name>mapred.mapper.class</name>
- <value>org.myorg.WordCount.Map</value>
- </property>
- <property>
- <name>mapred.reducer.class</name>
- <value>org.myorg.WordCount.Reduce</value>
- </property>
- <property>
- <name>mapred.input.dir</name>
- <value>${inputDir}</value>
- </property>
- <property>
- <name>mapred.output.dir</name>
- <value>${outputDir}</value>
- </property>
- </configuration>
- </map-reduce>
- <ok to='end'/>
- <error to='end'/>
- </action>
- <kill name='kill'>
- <message>Something went wrong: ${wf:errorCode('wordcount')}</message>
- </kill/>
- <end name='end'/>
- </workflow-app>
同时自己成org.myorg.WordCount这个Hadoop Map/Reduce Job,网上搜索一大把.
配置打包后通过OozieClient提交给Hadoop就直接可以运行了.