寻找连通域

http://www.mrluoyi.com/blog/2012/03/connected-domain/#respond

寻找一副二值图像中的连通域。全图遍历+DFS深度优先搜索。

示例输入:
5 5
0 0 0 0 1
0 1 1 0 1
0 1 0 0 1
1 1 1 0 1
1 1 0 0 1
示例输出:
The number of connected domains is: 2
Connected domains are labeled as below:
0 0 0 0 2
0 3 3 0 2
0 3 0 0 2
3 3 3 0 2
3 3 0 0 2

第一种办法比较直观,是递归的办法,代码如下:

#include<stdio.h>

//by Yi Luo (03/08/2012)

#define max 500
int I[max][max];
int n, m;// size = n*m 
int num = 0;

const int direction[][2]={{1,0},{0,-1},{0,1},{-1,0}};

bool check(int x, int y){
     if (x >= 0 && x < n && y >= 0 && y < m && I[x][y] == 1)
     {
            return true;
            }else
            {
                 return false;
                 }
}

bool DFS(int x, int y, int label){
     if (1 != I[x][y]) 
     {
        return false;
     }else
     {
       I[x][y] = label;
     
       for (int i = 0; i < 4; i++)
       {
         if (check(x + direction[i][0], y + direction[i][1]))
         {
             DFS(x + direction[i][0], y + direction[i][1], label);
         }
       } 
       
     }return true;
}

int main(void)
{
   scanf("%d%d", &n, &m);
   for (int i = 0; i < n; ++i)
   {
       for (int j=0; j< m; j++)
       {
       scanf("%d", &I[i][j]);
       } 
   }
    
   int label = 2;     
   for (int i = 0; i < n; ++i)
   {
    for (int j = 0; j < m; ++j)
        {
         if (DFS(i, j, label))
            {
            label++;
            }
         }
   }
   
   num = label - 2;
   printf("\n\nThe number of connected domains is: %d\n", num);
   printf("Connected domains are labeled as below:\n\n");
   
   for (int i = 0; i < n; ++i)
   {
       for (int j=0; j< m; j++)
       {
       printf("%d ", I[i][j]);
       } 
       printf("\n");
   }
     
   getchar();
   getchar();
   
   return 0;
}

刚刚又学到了一种新的办法,就是直接扫描的办法,比较巧妙。对于四领域的情况,主要是考察每个前景点的左边、上边两个点的情况:

1、如果左边和上边都有标记过的前景点,则选择二者标号更小的作为当前点的标记,并将之前所有的大号改成小号;
2、如果只有左边是标记过的点,则将当前点和其左边点标号一致;
3、如果只有上边是标记过的点,则和上面的点标号一致;
4、如果左边和上边都没有标记过的点,则当前前景点新开一个标号。

代码如下:



#include<stdio.h>

//by Yi Luo (03/09/2012)

#define size 500
int I[size][size];//二值图像矩阵  
int n, m, min, max;// size = n*m 
int num = 0;//连通域数目 

bool check(int x, int y){
     if (x >= 0 && x <= n && y >= 0 && y <= m && I[x][y] != 0)
     {
            return true;
     }else
            {
                 return false;
            }
}

int main(void)
{
   scanf("%d%d", &n, &m);
   for (int i = 0; i < n; ++i)
   {
       for (int j=0; j< m; j++)
       {
       scanf("%d", &I[i][j]);
       } //读入二值图像矩阵
   }
    
   int label = 1;
    
   for (int i = 0; i < n; ++i)
   {
    for (int j = 0; j < m; ++j)
        {
             if (check(i, j))//如果当前位置是合法前景 
             {
                if (check(i, j-1)) 
                {
                   if (check(i-1, j))//如果该点的左面、上面均是标注过的前景
                   {
                     min = I[i-1][j];
                     max = I[i][j-1];
                     if  (max < min) { 
                       min = I[i][j-1]; 
                       max = I[i-1][j];
                     for (int t = j; t >= 0; t--)
                     {
                        for (int w = i; w >=0; w--)
                        {
                            if (I[w][t] == max) { I[w][t] = min; }
                        }
                     }
                      label--;
                     }
                     I[i][j] = min;
                     } else //如果只有该点的左面是标注过的前景
                   {
                     I[i][j] = I[i][j-1];
                   }
                } else if (check(i-1, j)) //如果只有该点的上面是标注过的前景
                {
                     I[i][j] = I[i-1][j];
                } else //如果该点的左面,上面都不是标注过的前景
                  {
                     label ++;
                     I[i][j] = label;
                  }
             }

         }
   }
   
   num = label - 1;
   printf("\n\nThe number of connected domains is: %d\n", num);
   printf("Connected domains are labeled as below:\n\n");
   
   for (int i = 0; i < n; ++i)
   {
       for (int j=0; j< m; j++)
       {
       printf("%d ", I[i][j]);
       } //输出新的标注结果 
       printf("\n");
   }
     
   getchar();
   getchar();
   
   return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值