第一章 感知器

深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层

隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

可以看到,一个感知器有如下组成部分:

  • 输入权值 一个感知器可以接收多个输入(x1,x2,...xn),每个输入上有一个权值wi,此外还有一个偏置项b,就是上图中的w0。

  • 激活函数 感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数f来作为激活函数:

                            f (z) = 1(z>0)  或者 0(z<=0)

  • 输出 感知器的输出由下面这个公式来计算

                           y = f(w * x + b)          公式(1)

如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

例子:用感知器实现and函数

我们设计一个感知器,让它来实现and运算。程序员都知道,and是一个二元函数(带有两个参数和),下面是它的真值表

x1x2y
000
010
100
111

为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。

我们令w1 = 0.5;w2 = 0.5;b = -0.8而激活函数f就是前面写出来的阶跃函数,这时,感知器就相当于and函数。不明白?我们验算一下:

输入上面真值表的第一行,即x1 = 0 x2 = 0,那么根据公式(1),计算输出: 

                          y = f(w * x + b)

                             =f(w1 * x1 + w2 * x2 +b)

                             =f(0.5 * 0 + 0.5 * 0 - 0.8)

                             =f(-0.8)

                             =0


也就是当x1,x2都为0的时候,y为0,这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。

例子:用感知器实现or函数

同样,我们也可以用感知器来实现or运算。仅仅需要把偏置项b的值设置为-0.3就可以了。我们验算一下,下面是or运算的真值表

x1x2y
000
011
101
111

我们来验算第二行,这时的输入是x1 =0 x2 = 1,带入公式(1):

                            y = f(0.5 * 0 + 0.5 * 1 - 0.3)

                               =f(0.2)

                               =1

也就是当时x1=0,x2=1时y=1,即or真值表第二行。读者可以自行验证其它行。

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代的修改和,直到训练完成。

                           wi = wi + \Delta wi

                           b = b +\Delta b

其中:                   \Delta wi = \eta (t-y)xi

                            \Delta b = \eta (t-y)

 

wi是与输入xi对应的权重项,b是偏置项。事实上,可以把b看作是值永远为1的输入xb所对应的权重。t是训练样本的实际值,一般称之为label。而y是感知器的输出值,它是根据公式(1)计算得出。\eta是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。

每次从训练数据中取出一个样本的输入向量x,使用感知器计算其输出y,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。

编程实战:实现感知器

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/perceptron.py (python2.7)

对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

  • 使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。
  • 面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。
  • 没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。

下面是感知器类的实现代码。

from __future__ import print_function
from functools import reduce
'''
一、该类实现向量的计算操作
'''
class VectorOp(object):
    '''
     使用@staticmethod或@classmethod,就可以不需要实例化,直接类名.方法名()来调用。
    '''
    '''
    (1)函数说明:计算两个向量x 和 y的内积
    '''
    @staticmethod
    def dot(x,y):
        return reduce(lambda a,b:a+b,VectorOp.element_multiply(x,y),0.0)
    '''
     (2)函数说明:将两个向量x,y 按元素相乘
    '''
    @staticmethod
    def element_multiply(x,y):
        return list(map(lambda x_y:x_y[0] * x_y[1],zip(x,y)))
    '''
     (3)函数说明:将两个向量x,y按元素相加
    '''
    @staticmethod
    def element_add(x,y):
        return list(map(lambda x_y:x_y[0]+x_y[1],zip(x,y)))
    '''
     (4)函数说明:将向量v中的每个元素 与 标量s相乘
    '''
    @staticmethod
    def scala_multiply(v,s):
        return map(lambda e:e*s,v)

'''
二、开始编写感应器类
'''
class Perception(object):
    '''
    (1)函数说明:初始化感知器,设置输入参数的个数,以及激活函数
         参数: self 感知器
                input_num  输入参数的数目
                activator  激活函数(double类型)
         激活函数的形式
           f(z)= 1(z>0)或者 0(z<=0)
           y = f(w1x1+w2x2+b) 。其中x为输入值,w为输入上的权值,b为偏置项。(z=w1x1+w2x2+b))
    '''
    def __init__(self,input_num,activator):
        #设置感应器的激活函数
        self.activator = activator
        #权重向量初始化为0
        self.weights = [0.0]*input_num
        #偏置项初始化为0
        self.bias = 0.0
    '''
     (2)函数说明:返回学习到的权重、偏置项(这两个变量在训练过程中是不断变化的)
        参数:感应器 
    '''
    def __str__(self):
        #返回权重w、偏移量
        return "权重值\t:%s\n偏移值\t:%f\n" % (self.weights,self.bias)
    '''
     (3)函数说明:获取感应器的计算结果(即f(z)中的z值)
        参数: self 感应器
               input_vec 输入的x值
        返回值:w1x1+w2x2+b的结果z
        思路:1.把input_vec[x1,x2,x3...]和weights[w1,w2,w3...]打包在一起
              2.打包后变成[(x1,w1),(x2,w2),(x3,w3),...]
              3.利用map函数计算[x1*w1 , x2*w2 , x3*w3]
              4.最后利用reduce求和
    '''
    def predict(self,input_vec):
        return self.activator(
         VectorOp.dot(input_vec,self.weights)+ self.bias)
    '''
     (4)函数说明:对数据进行训练,训练指定的轮数
          参数:self 感应器
                input_vecs 输入的x值[x1,x2...]
                labels 训练样本的实际取值(1 或 0 )
                iteration 训练的轮数
                rate 学习率
    '''
    def train(self,input_vecs,labels,iteration,rate):
        #训练数据iteration轮
        for i in range(iteration):
            self._one_iteration(input_vecs,labels,rate)
    '''
     (5)函数说明:训练数据(训练一次)
        参数说明:input_vecs 输入的x值[x1,x2...]
                  labels 训练样本的实际取值(1 或 0 )
                  rate 学习率
        思路:1.把输入和实际输出打包在一起,成为样本的列表[(input_vec,label),...]
              2.此时每个训练样本是(input_vec,label)
              3.对每个样本,按照感知器规则更新权重
        权重、偏移项的更新规则:1.权重项:wi+wi的变化量 -> wi
                                  偏置项:b+b的变化量 -> b
                                2. 其中:wi的变化量 = n(t-y)xi
                                         b的变化量 = n(t-y)
                                    n :学习率。控制每一步调整的幅度
                                    t : 训练样本的实际值(实际输出值)(labels)
                                    y :感知器的输出值
    '''
    def _one_iteration(self,input_vecs,labels,rate):
        #1.把输入和实际输出打包在一起
        samples = zip(input_vecs,labels)
        #2.对每个样本,按照感知器规则更新权重
        for(input_vec,label) in samples:
            #计算感应器在当前权重下的输出
            output = self.predict(input_vec)
            #更新权重
            self._update_weights(input_vec,output,label,rate)
    '''
     (6)函数说明:更新权重、偏移项
        参数值:input_vecs 输入的值x
                output 感应器的输出值
                label  实际的输出值
                rate 学习率
        思路:1.将input_vecs[x1,x2,...]和weights[w1,w2,...]打包在一起
              2.打包之后,变成[(x1,w1),(x2,w2),...]
              3.利用感知器规则更新权重
    '''
    def _update_weights(self,input_vecs,output,label,rate):
        # 计算实际输出与感应器输出的差值
        data = label-output
        #更新权重(wi = wi + wi的变化量 = wi + (实际输出label-感应器输出output)*学习率rate*输入input_vecs )
        self.weights = VectorOp.element_add(
            self.weights,VectorOp.scala_multiply(input_vecs,rate*data))
        #更新偏移项
        self.bias = self.bias+data*rate

'''
接下来,利用感知器类去实现 and 函数(x1 and x2)
     x1   x2   输出
     0    0     0
     0    1     0
     1    0     0
     1    1     1
'''
'''
(1)定义激活函数f
'''
def f(x):
    #若x>0,f(x)=1 , 否则 f(x)=0
    return 1 if x>0 else 0
'''
(2)基于and真值表,构建训练数据
'''
def get_training_dataset():
    #构建输入的向量列表
    input_vecs = [[1,1],[0,0],[1,0],[0,1]]
    #期待输出的值
    # [1,1]:1   [0,0]:0   [1,0]:0  [0,1]:0
    labels = [1,0,0,0]
    #返回输入值,以及实际的输出值
    return input_vecs,labels
'''
 (3)使用and真值表训练感知器
    思路:1.创建感知器
          2.创建训练数据
          3.对数据进行训练,迭代10轮,学习速率为0.1
          4.返回创建好的感知器
'''
def train_and_perception():
    #创建输入个数为2,激活参数为f的感知器。
    #使的第一个初始化函数中的参数 input_num=2, activator=f
    p = Perception(2,f)
    #创建训练数据
    input_vecs,labels = get_training_dataset()
    #对数据进行训练
    p.train(input_vecs,labels,10,0.1)
    #返回训练好的感知器
    return p
'''
 测试
'''
if __name__ == '__main__':
    #训练and感知器
    and_perception = train_and_perception()
    #打印训练获取的权重
    print(and_perception)
    #测试
    print('1 and 1 = %d' % and_perception.predict([1,1]))
    print('1 and 0 = %d' % and_perception.predict([1,0]))
    print('0 and 1 = %d' % and_perception.predict([0,1]))
    print('0 and 0 = %d' % and_perception.predict([0,0]))









运行结果:

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值