最小二乘以及最小二乘求解超定方程组最优解的推导

本文介绍了最小二乘法在解决超定方程组问题中的推导过程,通过求导和投影矩阵两种方法来求解最优解。详细解释了误差最小化的数学原理,并给出了A^T AX = A^T b的解决方案,最终得出X = (A^T A)^(-1)A^T b。此外,还讨论了投影向量和平面对误差的影响,以及如何通过矩阵运算找到最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

~~~~ 这里写自定义目录标题

采用求导的方法

偶尔看到斯坦福吴恩达教授的机器学习第二节课,才明白了最小二乘的的推理过程,下面的推理看不懂的话,推荐去看一下老师的上课视频。

以下是一些预备知识:
在本文中 ∇ \nabla 表示的是求导运算,设A是一个 n × \times × n的矩阵,f表示一种函数关系,则 ∇ \nabla A f(A) =
KaTeX parse error: Can't use function '$' in math mode at position 18: …begin{pmatrix} $̲\partial$ f/ $\…

A、B、C均为矩阵:
tr(ABC) = tr(CAB) = tr(BCA)
∇ \nabla A tr(AB) = B^T
trA = tr(A^T)
∇ \nabla A tr(ABA^T C) = CAB + C^T A B^T
a表示一个实数,tra = a

超定方程组表示为:AX = b
误差为:AX-b
误差最小二乘为:KaTeX parse error: Expected 'EOF', got '\frae' at position 2: (\̲f̲r̲a̲e̲12)(AX-b)^T × \times ×(AX-b)
令误差最小二乘为0,则KaTeX parse error: Expected 'EOF', got '\frae' at position 2: (\̲f̲r̲a̲e̲12)(AX-b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值