###### 31. Next Permutation

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place, do not allocate extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1

public class Solution {
public void nextPermutation(int[] A) {
if(A == null || A.length <= 1) return;
int i = A.length - 2;
while(i >= 0 && A[i] >= A[i + 1]) i--; // Find 1st id i that breaks descending order
if(i >= 0) {                           // If not entirely descending
int j = A.length - 1;              // Start from the end
while(A[j] <= A[i]) j--;           // Find rightmost first larger id j
swap(A, i, j);                     // Switch i and j
}
reverse(A, i + 1, A.length - 1);       // Reverse the descending sequence
}

public void swap(int[] A, int i, int j) { // 俩交换方法差不多
// int tmp = A[i];
// A[i] = A[j];
// A[j] = tmp;
A[i] = A[i] + A[j];
A[j] = A[i] - A[j];
A[i] = A[i] - A[j];
}

public void reverse(int[] A, int i, int j) {
while(i < j) swap(A, i++, j--);
}
}
// 题目思路
// 先右边找第一个违反递减规则的数，这个数后面就是递减的了，该数为目标数a
// 再从右边找第一个比目标数a大的数，该数为目标数b
// a b互换，中间的递减序列分别互换，得结果
// 思路相当棒啊~~~~

#### LeetCode 31 Next Permutation (C,C++,Java,Python)

2015-05-14 14:36:42

#### LeetCode 31 Next Permutation（下一个排列）

2015-11-18 22:40:56

#### (Java)LeetCode-31. Next Permutation

2016-08-01 23:41:54

#### 31. Next Permutation (python)

2016-10-30 16:17:51

#### 31. Next Permutation | Java最短代码实现

2016-03-24 17:39:19

#### leetcode解题之31. Next Permutation java 版（下一个排列）

2017-04-07 12:53:09

#### [LeetCode] 031. Next Permutation (Medium) (C++/Python)

2015-03-07 16:11:46

#### 31 Next Permutation

2015-09-01 20:51:32

#### leetcode-31 Next Permutation 数字排列组合找到下一个更大值

2015-09-16 19:25:44

#### next_permutation原理剖析

2014-11-17 20:49:34

## 不良信息举报

31. Next Permutation