All in .
码龄7年
关注
提问 私信
  • 博客:45,418
    社区:17
    45,435
    总访问量
  • 25
    原创
  • 1,822,574
    排名
  • 4,553
    粉丝
  • 22
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-10-23
博客简介:

All in.的博客

查看详细资料
个人成就
  • 获得80次点赞
  • 内容获得27次评论
  • 获得568次收藏
创作历程
  • 25篇
    2021年
成就勋章
TA的专栏
  • 论文笔记
    20篇
  • 考试笔记
    1篇
  • 杂谈
    1篇
  • 会议报告笔记
    3篇
兴趣领域 设置
  • 人工智能
    自然语言处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

CSDN写博客常见问题汇总

CSDN写博客常见问题汇总关于空格图片居中关于空格名称代码长度不换行空格 常规空格的宽度半角空格 一个字母的宽度全角空格 一个字的宽度窄空格&thinsp半个字母的宽度图片居中图片链接末尾加“#pic_center”...
原创
发布博客 2021.12.23 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

NLPCC2021.10.14

NLPCC会议
原创
发布博客 2021.12.23 ·
1641 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

BIBM2019_Fine-tuning BERT for Joint Entity and Relation Extraction in Chinese Medical Text

本文针对实体关系联合抽取任务,提出了一种聚焦注意力模型。该模型通过动态范围注意机制将BERT语言模型集成到联合学习中,从而提高了共享参数层的特征表示能力。
原创
发布博客 2021.12.23 ·
1151 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

腾讯AI Lab_图深度表示基础和前沿进展(2020)

提示:本文为AI lab机器学习中心 荣钰老师介绍总结图深度表示基础和前沿进展背景问题定义针对图表示学习的两个不同视角基于图结构的表示学习背景大量的数据是以图结构的形式进行组织社交网络金融网络化学分子 基于图结构的数据挖掘在实际场景中具有广泛的应用社团分析用户画像连接预测属性预测……问题定义什么是图表示学习? 将图映射到向量空间的优势:向量表示相对于传统图表示(邻接矩阵,邻接表)对现有机器学习算法更友好。可以
原创
发布博客 2021.10.12 ·
580 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

ACL2021_Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition

Learning from Miscellaneous Other-Class Words for Few-shot Named Entity Recognition知识准备摘要介绍相关工作原型网络方法符号标记Undefined Classes DetectionStep 1: Mapping Function LearningStep 2: Binary Group Classifier TrainingStep 3: Binary Group Classifier InferenceJoint Clas
原创
发布博客 2021.10.09 ·
593 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

ACL2021_Enhancing Entity Boundary Detection for Better Chinese Named Entity Recognition

Enhancing Entity Boundary Detection for Better Chinese Named Entity Recognition摘要介绍相关工作模型TokenEmbeddingToken EmbeddingTokenEmbedding 层基于Star−TransformerStar-TransformerStar−Transformer上下文嵌入层Multi-Head AttentionStar−TransformerStar-TransformerStar−Transform
原创
发布博客 2021.09.11 ·
1757 阅读 ·
4 点赞 ·
1 评论 ·
14 收藏

CCKS2020 任务三:面向中文电子病历的医疗实体及事件抽取

提示:任务三包含两个子任务,本文主要关注第二个子任务面想中文电子病历的医疗事件抽取任务介绍一、pandas是什么?二、使用步骤1.引入库2.读入数据总结任务介绍医疗事件抽取:  本任务为中文病历医疗事件抽取任务,即给定主实体为肿瘤的电子病历文本数据,定义肿瘤事件的若干属性,如肿瘤大小,肿瘤原发部位等,识别并抽取事件及属性,进行文本结构化。  本任务提供少量标注数据、大量非标注数据集及词表,旨在训练数据有限的情况下,利用非标注文本和半监督等方法提升模型性能。更接近真实世界的场景。事件模板定义:
原创
发布博客 2021.09.04 ·
5314 阅读 ·
1 点赞 ·
5 评论 ·
30 收藏

ACL2021_ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information

ChineseBERT:利用字形和拼音信息加强中文预训练摘要介绍二、使用步骤1.引入库2.读入数据总结论文.摘要目前的中文预训练模型忽略了汉字特有的两个重要方面:字形和拼音,它们为语言理解提供了重要的句法和语义信息。文章提出了ChineseBERT,它将汉字的字形和拼音信息结合到预训练语言模型中。字形嵌入基于汉字的不同字体,能够从视觉特征中捕捉汉字的语义,拼音嵌入刻画了汉字的读音,处理了汉语中普遍存在的异义词现象(同音异义)。在大规模未标注中文语料库上进行了预训练,该模型以较少的训练步骤获得了比
原创
发布博客 2021.08.17 ·
1595 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

ACL2021_Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter

文章目录前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、pandas是什么?示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。二、使用步骤1.引入库代码如下(示例):import numpy as npimport
原创
发布博客 2021.07.22 ·
2393 阅读 ·
5 点赞 ·
1 评论 ·
13 收藏

CIKM2020_Exploiting Class Labels to Boost Performance on Embedding-based Text Classification

利用标签与样本之间的统计信息改善文本分类中的embedding表示摘要介绍相关工作TF-CR加权方案TF-CR在嵌入中的应用实验数据集Word Embedding Models & Classifiers加权方案使用TF-CR调整文本表示不同大小的训练集结果结论摘要文本分类是处理文本数据最常见的任务之一,有助于从大规模数据集中进行其他研究。近年来,不同类型的嵌入特征已成为文本分类的事实标准。这些嵌套有能力捕捉从大型外部集合中的事件推断出的单词的含义。虽然它们是建立在外部集合之上的,但它们不知
原创
发布博客 2021.07.08 ·
423 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AAAI2019_A Hierarchical Multi-task Approach for Learning Embeddings from Semantic Tasks

文章目录摘要介绍模型Words embeddingsNER实体提及检测(EMD)共指消解(CR)关系抽取 (RE)实验设置数据集和评估指标论文摘要为了评估是否可以利用多任务学习来学习可用于各种自然语言处理(NLP)下游应用的丰富表示,已经投入了大量的工作。然而,目前仍缺乏对多任务学习产生显著影响的背景的了解。在这一工作中,我们引入了一个分层模型,该模型在一组精心选择的语义任务上进行多任务学习。通过监督模型底层的一组低级任务和顶层的一组较复杂的任务,以分层的方式进行训练,引入归纳偏差。该模型在许
原创
发布博客 2021.07.07 ·
878 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

EMNLP2020_切断前后的边:事件时序关系神经结构

Severing the Edge Between Before and After:Neural Architectures for Temporal Ordering of Events摘要一、pandas是什么?二、使用步骤1.引入库2.读入数据总结摘要在本文中,我们提出了一种神经结构和一套通过预测时间关系来对事件进行排序的训练方法。我们提出的模型接收文本范围内的一对事件作为输入,并识别它们之间的时间关系(之前、之后、相等、V)。鉴于这项任务的一个关键挑战是标注数据的稀缺,我们的模型要么依赖于预
原创
发布博客 2021.06.06 ·
724 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

中级软件设计师知识点总结

中级软件设计师知识点总结提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加例如:第一章 Python 机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档中级软件设计师知识点总结中级软件设计师知识点总结前言一、pandas是什么?二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。
原创
发布博客 2021.05.31 ·
13963 阅读 ·
50 点赞 ·
5 评论 ·
433 收藏

YSSNLP_2021 实体关系联合和抽取

湖南师范大学 曾道建老师实体关系联合抽取一、实体关系抽取任务介绍二、实体关系抽取与知识图谱三、实体关系抽取任务分类1.监督学习2.远程监督关系抽取3.少样本数据抽取4.实体关系联合抽取四、实体关系联合抽取常用方法1.序列标注(NovelTagging)2.表填充3. 序列到序列3.1 CopyRE3.2 CopyMTL3.3 WDec & PNDec3.4 Seq2UMTree总结整理版PPT一、实体关系抽取任务介绍关系定义为两个或多个实体的某种联系实体关系抽取是自动识别出实体间是否
原创
发布博客 2021.05.27 ·
1403 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

TimeML: Robust Specification of Event and Temporal Expressions in Text

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档TimeML: Robust Specification of Event and Temporal Expressions in Text1. TimeML 简介2. TimeML 标注规则及示例3. TimeML 的发展总结论文1. TimeML 简介TimeML规范,是在自然语言文本中表示事件和时间表达式的一种规范语言,是为了提升自然语言问答系统的处理性能而提出的,现已成为事件时间表达式的一种ISO标准规范。TimeML是在
原创
发布博客 2021.04.20 ·
1033 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

ACL2019_Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers

Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers摘要1.介绍2.背景3. 提出的方法3.1 基于Bert的MRE结构化预测3.2 基于相对距离的entity-aware Self-Attention4. 实验4.1 设置4.2 ACE 2005 实验结果4.3 SemEval 2018 Task7 实验结果4.2 其他SRE结果5. 总结论文摘要从输入段落中提取多个实体关系的最新解决方案总是需要对输入进行
原创
发布博客 2021.04.17 ·
574 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

BioNLP2020_A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction

A BERT-based One-Pass Multi-Task Model for Clinical Temporal Relation Extraction摘要一、介绍二、方法1.双任务2.基于窗口的token序列处理3.实验3.1 数据和设置3.2 在THYME上的结果3.3 计算效率4. 讨论论文摘要最近,BERT在从临床电子病历文本中提取时间关系方面取得了最先进的性能。然而,当前的方法效率很低,因为它需要对每个输入序列进行多次传递。本文将最近提出的用于关系分类的one-pass模型扩展为用
原创
发布博客 2021.04.17 ·
882 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction

EMNLP_2019 Joint Event and Temporal Relation Extraction with Shared Representations and Structured Prediction摘要介绍相关工作联合事件抽取模型neural SSVMSSVM的损失函数为:MAP(最大后验概率)推断约束条件实施细节数据集Baselines端到端事件时序关系提取实验实验结果消融实验总结论文摘要这篇文章主要是解决“事件-事件联合抽取”问题。与已有工作相比,本文提出的方法有两个优点:
原创
发布博客 2021.03.26 ·
634 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

IEEE2019_A Survey of Event Extraction from Text

A Survey of Event Extraction from TextAbstractⅠ. IntroductionA. PUBLIC EVALUATION PROGRAMSB.SUMMARY OF THIS SURVEYⅡ. EVENT EXTRACTION TASKSA. CLOSED-DOMAIN EVENT EXTRACTIONB. OPEN-DOMAIN EVENT EXTRACTIONⅢ. EVENT EXTRACTION CORPUSA. ACE事件语料库B. THE TAC-KBP C
原创
发布博客 2021.03.24 ·
2366 阅读 ·
3 点赞 ·
0 评论 ·
16 收藏

2020_Joint Entity and Relation Extraction with Set Prediction Networks

Joint Entity and Relation Extraction with Set Prediction NetworksAbstractIntroductionMethodSentence EncoderNon-Autoregressive Decoder for Triple Set GenerationInput.Architecture.Bipartite Matching LossExperimentsConclusion论文Abstract联合实体和关系抽取任务的目标是从一个句子
原创
发布博客 2021.03.06 ·
1473 阅读 ·
2 点赞 ·
5 评论 ·
7 收藏
加载更多