Sunshine_in_Moon的专栏

天行健君子以自强不息!

流形学习-高维数据的降维与可视化

本文转自:http://blog.csdn.net/u012162613/article/details/45920827 1.流形学习的概念 流形学习方法(Manifold Learning),简称流形学习,自2000年在著名的科学杂志《Science》被首次提出以来,已成为信息科学领域的研...

2016-04-15 11:06:51

阅读数 4909

评论数 0

随机森林概述

 本文转自:http://blog.csdn.net/armily/article/details/8923961 在机器学习中,随机森林由许多的决策树组成,因为这些决策树的形成采用了随机的方法,因此也叫做随机决策树。随机森林中的树之间是没有关联的。当测试数据进入随机森林时,其实就是让每一...

2015-08-28 10:58:27

阅读数 1235

评论数 0

浅析人脸检测之Haar分类器方法

 本文转自:http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法 一、Haar分类器的前世今生        人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来...

2015-07-04 19:46:27

阅读数 1014

评论数 0

openCV 级联分类器

 本文转自:    http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/user_guide/ug_traincascade.html                                                     ...

2015-07-04 19:16:53

阅读数 1161

评论数 0

Adaboost 算法的原理与推导(强烈推荐)

 本文转自:http://www.360doc.com/content/14/1109/12/20290918_423780183.shtml Adaboost 算法的原理与推导 0 引言     一直想写Adaboost来着,但迟迟未能动笔。其算法思想虽然简单“听取多人意见,...

2015-07-01 21:17:35

阅读数 3212

评论数 1

boosting算法

 本文转自:http://www.360doc.com/content/12/0307/12/4910_192442968.shtml 一、Boosting算法的发展历史   Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较...

2015-07-01 21:14:31

阅读数 730

评论数 0

直方图交叉核

 本文转自:http://blog.csdn.net/smartempire/article/details/23168945 看关于LBP人脸识别的论文时提到了Histogram intersection这个方法,方法最初来自The Pyramid Match Kernel:Discri...

2015-06-28 22:11:15

阅读数 979

评论数 0

LBP方法

 本文转自:http://blog.csdn.net/smartempire/article/details/23249517 与第一篇博文特征脸方法不同,LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但...

2015-06-28 22:10:10

阅读数 726

评论数 0

LDA 线性判别分析

 本文转自:http://blog.csdn.net/bookwormno1/article/details/6791373 LDA算法入门   一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判...

2015-06-28 16:03:26

阅读数 1446

评论数 1

PCA

 本文转自:http://blog.csdn.net/xw20084898/article/details/34837761 在图形识别方面,主成分分析(Principal Comonents Analysis,PCA)算是比较快速而且又准确的方式之一,它可以对抗图形平移旋转的事件发生,并...

2015-06-28 12:06:22

阅读数 672

评论数 0

SMO算法

 本文转自:http://blog.sina.com.cn/s/blog_89ba75c80101gxgg.html SMO算法     在上文2.1.2节中,我们提到了求解对偶问题的序列最小最优化SMO算法,但并未提到其具体解法。     事实上,SMO算法是由M...

2015-06-17 22:19:48

阅读数 2868

评论数 0

支撑矢量机-SMO详解

 本文转自:http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John ...

2015-06-17 21:59:01

阅读数 629

评论数 0

奇异值分解

本分引用了:http://blog.csdn.net/abcjennifer/article/details/8131087 http://blog.csdn.net/google19890102/article/details/27109235 一、什么是酉矩阵? n阶复方阵U的n个列向量...

2015-06-11 11:47:22

阅读数 1292

评论数 0

极大似然估计原理思想

本文转自:  http://blog.csdn.net/poi7777/article/details/23204789     在机器学习的领域内,极大似然估计是最常见的参数估计的方法之一,在这里整理一下它的基本原理。 极大似然估计从根本上遵循——眼见为实,这样的哲学思想。也就是...

2015-06-09 19:37:49

阅读数 9305

评论数 0

什么是NP问题?

本文转自:  http://blog.csdn.net/panpan639944806/article/details/8146206 什么是NP问题 概念: 在计算机学科中,存在多项式时间的算法的一类问题,称之为P类问题;而像梵塔问题、推销员旅行问题、(命题表达式)可满足问题这类,...

2015-06-08 20:27:38

阅读数 782

评论数 0

机器学习--交叉验证

本文转自:  http://blog.csdn.net/linkin1005/article/details/42869331 假设我们需要从某些候选模型中选择最适合某个学习问题的模型,我们该如何选择?以多元回归模型为例:,应该如何确定k的大小,使得该模型对解决相应的分类问题最为有效?如...

2015-06-08 16:54:59

阅读数 1274

评论数 0

机器学习--特征选择

本文转自:  http://blog.csdn.net/linkin1005/article/details/43018827 特征选择是一种及其重要的数据预处理方法。假设你需要处理一个监督学习问题,样本的特征数非常大(甚至 ),但是可能仅仅有少部分特征会和对结果产生影响。甚至是简单...

2015-06-08 16:54:50

阅读数 616

评论数 0

机器学习--误差理论

本文转自:  http://blog.csdn.net/linkin1005/article/details/42563229 一、偏倚(bias)和方差(variance) 在讨论线性回归时,我们用一次线性函数对训练样本进行拟合(如图1所示);然而,我们可以通过二次多项式函数对训练样...

2015-06-08 16:53:35

阅读数 1139

评论数 0

机器学习--因子分析

本文转自:  http://blog.csdn.net/linkin1005/article/details/41944771 一、问题的提出 在EM算法求解高斯混合模型一文中,我们的样本集 ,而样本的数量m远大于样本的维度n,因此,可以轻易的构造出高斯混合模型。 现在,我们...

2015-06-08 16:52:01

阅读数 1061

评论数 0

机器学习--主成分分析

本文转自:  http://blog.csdn.net/linkin1005/article/details/42171387 因子分析是基于概率模型的基础上,利用EM算法的迭代,对参数进行估计。主成份分析(Principal Components Analysis, PCA)仅仅通过的...

2015-06-08 16:51:23

阅读数 782

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭