线性可分支持向量机最大间隔唯一性证明

线性可分支持向量机最大间隔唯一性证明

《统计学习方法》定理7.1中 唯一性的证明:

假设问题(7.13)~(7.14)存在两个最优解( w1,b1 w 1 ∗ , b 1 ∗ )和( w2,b2 w 2 ∗ , b 2 ∗ ),则 w1w2 w 1 ∗ 和 w 2 ∗ 的长度相同,即 ||w1||=||w2||=c | | w 1 ∗ | | = | | w 2 ∗ | | = c ,其中c是一个常数。令 w=w1+w22 w = w 1 ∗ + w 2 ∗ 2 b=b1+b22 b = b 1 ∗ + b 2 ∗ 2 ,将( w1,b1 w 1 ∗ , b 1 ∗ )和( w2,b2 w 2 ∗ , b 2 ∗ )分别带入到式(7.14) yi(wxi+b)1>=0 y i ( w ⋅ x i + b ) − 1 >= 0 ,有 yi(w1xi+b1)1>=0 y i ( w 1 ∗ ⋅ x i + b 1 ∗ ) − 1 >= 0 yi(w2xi+b2)1>=0 y i ( w 2 ∗ ⋅ x i + b 2 ∗ ) − 1 >= 0
两式相加除以2,就有 yi(w1+w22xi+b1+b22)1>=0 y i ( w 1 ∗ + w 2 ∗ 2 ⋅ x i + b 1 ∗ + b 2 ∗ 2 ) − 1 >= 0 。所以,(w, b)是问题(7.13)~(7.14)的可行解,从而有

c||w||12||w1||+12||w2||=c c ≤ | | w | | ≤ 1 2 | | w 1 ∗ | | + 1 2 | | w 2 ∗ | | = c

上式表明, ||w||=12||w1||+12||w2||=c | | w | | = 1 2 | | w 1 ∗ | | + 1 2 | | w 2 ∗ | | = c ,如果有 w1=λw2 w 1 ∗ = λ w 2 ∗ ,则式 ||w||=12||w1||+12||w2|| | | w | | = 1 2 | | w 1 ∗ | | + 1 2 | | w 2 ∗ | | 会等价于 |λ+1|||w2||2=|λ|2||w2||+12||w2|| | λ + 1 | ⋅ | | w 2 ∗ | | 2 = | λ | 2 | | w 2 ∗ | | + 1 2 | | w 2 ∗ | | ,又因为 w1w2 w 1 ∗ 和 w 2 ∗ 要满足式(7.13)使 ||w||2 | | w | | 2 最小,所以 λ=1 λ = 1 ,即 w1=w2 w 1 ∗ = w 2 ∗
由此两个最优解( w1,b1 w 1 ∗ , b 1 ∗ )和( w2,b2 w 2 ∗ , b 2 ∗ )可以写为( w,b1 w ∗ , b 1 ∗ )和( w,b2 w ∗ , b 2 ∗ )。

再证 b1=b2 b 1 ∗ = b 2 ∗
x1x2 x 1 ′ 和 x 2 ′ 是集合 {xi|yi=+1} { x i | y i = + 1 } 中分别对应于( w,b1 w ∗ , b 1 ∗ )和( w,b2 w ∗ , b 2 ∗ )使得问题(7.14)的不等式等号成立的点, x′′1x′′2 x 1 ″ 和 x 2 ″ 是集合 {xi|yi=1} { x i | y i = − 1 } 中分别对应于( w,b1 w ∗ , b 1 ∗ )和( w,b2 w ∗ , b 2 ∗ )使得问题(7.14)的不等式等号成立的点,则有方程组
(1) 1(wx1+b1)1=0 1 ⋅ ( w ∗ ⋅ x 1 ′ + b 1 ) − 1 = 0
(2) 1(wx2+b2)1=0 1 ⋅ ( w ∗ ⋅ x 2 ′ + b 2 ) − 1 = 0
(3) (1)(wx′′1+b1)1=0 ( − 1 ) ⋅ ( w ∗ ⋅ x 1 ″ + b 1 ) − 1 = 0
(4) (1)(wx′′2+b2)1=0 ( − 1 ) ⋅ ( w ∗ ⋅ x 2 ″ + b 2 ) − 1 = 0
(1)-(3),得到 b1=12(wx1+wx′′1) b 1 = 1 2 ( w ∗ ⋅ x 1 ′ + w ∗ ⋅ x 1 ″ )
(2)-(4),得到 b2=12(wx2+wx′′2) b 2 = 1 2 ( w ∗ ⋅ x 2 ′ + w ∗ ⋅ x 2 ″ )
两式相减,得

b1b2=12[w(x1x2)+w(x′′1x′′2)] b 1 ∗ − b 2 ∗ = − 1 2 [ w ∗ ⋅ ( x 1 ′ − x 2 ′ ) + w ∗ ⋅ ( x 1 ″ − x 2 ″ ) ]

又因为
(wx2+b1)>=1=(wx1+b1) ( w ∗ ⋅ x 2 ′ + b 1 ) >= 1 = ( w ∗ ⋅ x 1 ′ + b 1 )
(wx1+b2)>=1=(wx2+b2) ( w ∗ ⋅ x 1 ′ + b 2 ) >= 1 = ( w ∗ ⋅ x 2 ′ + b 2 ) ,所以有
w(x2x1)>=0 w ∗ ( x 2 ′ − x 1 ′ ) >= 0 w(x1x2)>=0 w ∗ ( x 1 ′ − x 2 ′ ) >= 0 ,则 w(x1x2)=0 w ∗ ( x 1 ′ − x 2 ′ ) = 0 。同理有 w(x′′1x′′2)=0 w ∗ ( x 1 ″ − x 2 ″ ) = 0
因此, b1b2=0 b 1 ∗ − b 2 ∗ = 0 ,即 b1=b2 b 1 ∗ = b 2 ∗
所以最优解是唯一的。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值