源码 反码 补码 分析

1、原码表示法
0--正数   1--负数  对于n+1位的二进制数(包括符号位)

对于定点整数

当X>0时,原码表示为X,这个很好理解

当X<0时,X的原码是在|X|(即-X)的二进制码的符号位(即首位)将0改为1,所以数值上是相当于在|X|的大小上加上一个2^n,图示中X为负数,所以减去一个负数等于加上该数的绝对值,2^n-X正是我们推导的。                

需要注意的地方:举个例子,我们假设现在X= -1,其原码是1,001(一共四位包括符号位),根据上图公式,所以X的原码大小应该为2^n-X即2^3 -(-1)= 9  即 1,001。

好,问题就出现在这里,你算出来的数值大小是9,然而这个9所代表的二进制码却是-1,so,你理清楚逻辑了吗?

实际上我们公式推导出的是指这个数的二进制大小,其最高位我们不认为是符号位,而在原码的真正表达过程中,则将最高位的视为符号位,这就是冲突所在,当你用数学公式表示这个码值大小时,是直接将其看为一串二进制数的大小,符号默认为正,而这个无符号的数值大小则刚好对应有符号的负数原码。

对于定点小数

当X>0时,原码表示为X

 当X<0时,同理X的原码是在|X|(即-X)的二进制码的符号位(即首位)将0改为1,所以数值上是相当于在|X|的大小上加上一个1,图示中X为负数,所以减去一个负数等于加上该数的绝对值,1-X正是我们推导的。

稍微解释下:对于n+1位的定点整数,去除符号位后有n位,能表示2^n个数,因为0要占一种情况,所以只能表示从0到2^n-1共2^n个数,所以最大为2^n-1,同理对于负数,注意原码有正零与负零。

对于n+1位定点小数,去除符号位后有n位,最大的数为0.11111……1(n个1),因为0.11111……1(n个1) + 0.00000(n-1个0)1 = 1  所以最大数为1 - 0.0000(n-1个0)1即1-2^(-n),同理对于负数

2、反码表示法
对于n+1位的二进制数(包括符号位)

                         

简单来说,正数的反码与正数的原码相等,负数的反码与负数绝对值的原码取反相等。

我们来考虑下取反怎么用数学方式描述,假定有个数为-7,二进制位10000111(8位,最高位为符号位),取反后应该为01111000,其实可以把它看做为被11111111减后得到。即

                     11111111

                -    01111000

---------------------------------------------

                     10000111

11111111实际上数值大小为2^8-1=255   即对于n位的整数X,对其取反,相当于2^n-1 - X   

下面考虑下小数取反如何用算式描述,假定有个小数为0.0000001,取反后应该为1.11111110,可以看做其取反后是被1.11111111减去后得到的。即

                     1.1111111

                -    0.0000001

---------------------------------------------

                     1.1111111

1.1111111= 1 + 0.1111111        数值大小为1 + (1-2^(-7)) = 2-2^(-7)   即对于n位的小数X,对其取反,相当于2-2^(-(n-1)) - X


对于定点整数

当X>0时,X的反码等于X的原码,表示为X。

当X<0时,X的反码是等于对|X|(即-X)取反,对于n+1位的二进制数负数X,取反后数值大小为2^(n+1)-1- |X|,去除绝对值,得到反码的数值大小为 2^(n+1)-1 + X

对于定点小数

当X>0时,X的反码等于X的原码,表示为X。

当X<0时,X的反码是等于对|X|(即-X)取反,对于n+1位的小数X,对其取反,相当于2-2^(-n) -|X|,去除绝对值,得到反码的数值大小2-2^(-n) +X

3、补码表示法
对于n+1位的二进制数(包括符号位)


简单来说,正数的补码与正数的原码相等,负数的补码等于负数补码在末位加1,即负数绝对值的原码取反后末位加1。

对于定点整数

当X>0时,X的补码等于X,与原码相同

当X<0时,X的补码等于|X|取反后末位加一,|X|的取反,套用上面已推的公式为2^(n+1)-1 +X。末位加一,即数值再加上一,最后补码为2^(n+1) +X

对于定点小数

当X>0时,X的补码等于X

当X<0时,X的补码等于|X|取反后末位加一,|X|的取反,套用上面已推的公式为2-2^(-n) +X,末位加一,即数值上加上了0.0000000...(n-2个0) 1,为2^(-n),所以最后补码为2+X

 

展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值