【面试题10 : 变态跳台阶】

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

思路

跳一级台阶有一种跳法;

f(1) = 1
//一个台阶只有一种跳法

跳两级台阶有两种跳法,即一个台阶一个台阶地跳和一次性跳两个台阶:

f(2) = 2 = f(2-1) + f(2-2);
//f(2-2) 表示2阶一次跳2阶的次数。
//n = 2时,会有两个跳的方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 

跳三级台阶有四种跳法

f(3) = 4 = f(3-1) + f(3-2) + f(3-3)
//第一次跳出1阶后面剩下:f(3-1);
//第一次跳出2阶,剩下f(3-2);
//第一次3阶,那么剩下f(3-3)

n = n时,会有n中跳的方式,1阶、2阶…n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)

得出最终结论,在n阶台阶,一次有1、2、…n阶的跳的方式时,总得跳法为:

          | 1       ,(n=0 ) 
f(n) =    | 1       ,(n=1 )
          | 2*f(n-1),(n>=2)

代码实现

public class Solution {
    public int JumpFloorII(int target) {
        if (target <= 0) {
            return -1;
        } else if (target == 1) {
            return 1;
        } else {
            return 2 * JumpFloorII(target - 1);
        }
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sunweiguo1/article/details/80342971
个人分类: 剑指offer
所属专栏: 剑指offer题解
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭