【数据处理】python数据评估常用指标:ks、fpr、tpr

def cal_ks(df, col, target):
    """
    df:数据集
    col:输入的特征
    target:好坏标记的字段名

    return:
    ks: KS值
    precision:准确率
    tpr:召回率
    fpr:打扰率
    """

    bad = df[target].sum()
    good = df[target].count() - bad
    value_list = list(df[col])
    label_list = list(df[target])
    value_count = df[col].nunique()

    items = sorted(zip(value_list, label_list), key=lambda x: x[0])

    value_bin = 
  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值