Python环境下TensorFlow安装
1. 环境要求
在以下 64 位系统上测试过 TensorFlow,并且这些系统支持 TensorFlow:
- 软件
- Python 3.5–3.7
- 操作系统
- Ubuntu 16.04 或更高版本
- Windows 7 或更高版本
- macOS 10.12.6 (Sierra) 或更高版本(不支持 GPU)
- Raspbian 9.0 或更高版本
python安装过程省略,能在命令行运行python命令即为安装完成
2.TensorFlow安装
#pip或pip3升级到最新版本
pip install --upgrade pip
如果报错尝试运行
python -m pip install --upgrade pip
#安装最新稳定的CPU和GPU版本
pip install tensorflow
对于TensorFlow 1.x,CPU和GPU软件包是分开的,
- tensorflow==1.15:仅支持 CPU 的版本
- tensorflow-gpu==1.15:支持 GPU 的版本
3. 验证是否安装成功
- 打开cmd,键入
python,进入python命令行 - python命令行下输入
import tensorflow as tf
hello = tf.constant(‘Hello TensorFolw!’)
session = tf.Session()
print(session.run(hello))
最终输出
b'Hello TensorFlow!'
这种安装方式适合初学者,刚刚学习TensorFlow时使用,简单快速易上手,但由于实际开发中不同python包要求的TensorFlow版本不同,导致不同项目需要不同的TensorFlow版本,这时就需要Anaconda来管理了
本文详细介绍了在Python环境下安装TensorFlow的步骤,包括适用于初学者的简单方法和系统要求。首先确保拥有Python3.5-3.7环境,然后通过pip升级和安装TensorFlow。对于TensorFlow1.x,提供了CPU和GPU版本的选择。验证安装成功的方法是在Python命令行导入TensorFlow并运行示例代码。当面临不同项目对TensorFlow版本需求不同时,推荐使用Anaconda进行管理。

被折叠的 条评论
为什么被折叠?



