深度学习之感知机

本文转自《零基础入门深度学习》系列文章,阅读原文请移步这里

一、深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:
在这里插入图片描述
上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层。

隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

二、感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器(如下图)。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。
在这里插入图片描述
从图中可以看出,感知机有三个部分组成:

  • 输入权重:一个感知器可以接收多个输入 ( x 1 , x 1 2 , . . . , x n ∣ x i ∈ ℜ ) (x_1,x_12,...,x_n | x_i \isin \real) (x1,x12,...,xnxi),每个输入上有一个权值 w i ∈ ℜ w_i \isin \real wi,此外还有一个偏置项 b ∈ ℜ b \isin \real b,就是上图中的 w 0 w_0 w0
  • 激活函数:感知器的激活函数可以有很多选择,比如我们可以选择下面这个阶跃函数 f f f来作为激活函数: f ( z ) = { 1 z > 0 0 otherwise                    ( 1 ) f(z)=\begin{cases} 1 & z > 0 \\ 0 &\text{otherwise} \end{cases} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space (1) f(z)={10z>0otherwise                  (1)
  • 输出:感知器的输出由下面这个公式来计算 y = f ( w ∗ x + b )                       公 式 ( 1 ) y=f(w*x+b)\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space公式(1) y=f(wx+b)                     (1)

如果看完上面的公式一下子就晕了,不要紧,我们用一个简单的例子来帮助理解。

三、感知器应用
  1. 实现and函数,如下表两个输入 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)和一个输出 y y y
x 1 x_1 x1 x 2 x_2 x2 y y y
000
010
100
111

为了计算方便,我们用0表示false,用1表示true。这没什么难理解的,对于C语言程序员来说,这是天经地义的。
我们令 w 1 = 0.5 ; w 2 = 0.5 ; b = − 0.8 w_1=0.5;w_2=0.5;b=-0.8 w1=0.5;w2=0.5;b=0.8,而激活函数 f f f就是前面写出来的阶跃函数,这时,感知器就相当于and函数。不明白?我们验算一下:
输入上面真值表的第一行,即 x 1 = 0 ; x 2 = 0 x_1=0;x_2=0 x1=0;x2=0,那么根据公式(1),计算输出: y = f ( w ∗ x + b ) y=f(w*x+b) y=f(wx+b)                  = f ( w 1 x 1 + w 2 x 2 + b ) \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=f(w_1x_1+w_2x_2+b)                 =f(w1x1+w2x2+b)                          = f ( 0.5 ∗ 0 + 0.5 ∗ 0 − 0.8 ) \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=f(0.5*0+0.5*0-0.8)                         =f(0.50+0.500.8) = f ( − 0.8 )      =f(-0.8)\space\space\space\space =f(0.8)     = 0                  =0\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space =0                
也就是当 x 1 x 2 x_1x_2 x1x2都为0的时候, y y y为0。这就是真值表的第一行。读者可以自行验证上述真值表的第二、三、四行。

  1. 实现or函数,如下表两个输入 ( x 1 , x 2 ) (x_1,x_2) (x1,x2)和一个输出 y y y
x 1 x_1 x1 x 2 x_2 x2 y y y
000
011
101
111

只需要将偏置项 b b b的值设置为-0.3就可以把感知器有and函数转变成or函数。下面验证第三行的数据:
y = f ( w ∗ x + b ) y=f(w*x+b) y=f(wx+b)                  = f ( w 1 x 1 + w 2 x 2 + b ) \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=f(w_1x_1+w_2x_2+b)                 =f(w1x1+w2x2+b)                          = f ( 0.5 ∗ 1 + 0.5 ∗ 0 − 0.3 ) \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space=f(0.5*1+0.5*0-0.3)                         =f(0.51+0.500.3) = f ( 0.2 )         =f(0.2)\space\space\space\space\space\space\space =f(0.2)        = 1                  =1\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space =1                
实际上感知器不仅仅能实现简单的布尔运算,它可以拟合任何的线性函数,任何线性分类或线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。
在这里插入图片描述
然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。
在这里插入图片描述

四、感知器的训练

现在,你可能困惑前面的权重项和偏置项的值是如何获得的呢?这就要用到感知器训练算法:将权重项和偏置项初始化为0,然后,利用下面的感知器规则迭代的修改和,直到训练完成。 w i ← w i + Δ w i ;   b ← b + Δ b w_i \gets w_i+\Delta w_i; \space b\gets b + \Delta b wiwi+Δwi; bb+Δb其中: Δ w i = η ( t − y ) x i ;   Δ b = η ( t − y ) \Delta w_i = \eta(t-y)x_i; \space \Delta b=\eta(t-y) Δwi=η(ty)xi; Δb=η(ty)
w i w_i wi是与输入 x i x_i xi对应的权重项, b b b是偏置项。事实上,可以把 b b b看作是值永远为1的输入 x b x_b xb所对应的权重。 t t t是训练样本的实际值,一般称之为label。而 y y y是感知器的输出值,它是根据公式(1)计算得出。 η \eta η是一个称为学习速率的常数,其作用是控制每一步调整权的幅度。
每次从训练数据中取出一个样本的输入向量 x x x,使用感知器计算其输出 y y y,再根据上面的规则来调整权重。每处理一个样本就调整一次权重。经过多轮迭代后(即全部的训练数据被反复处理多轮),就可以训练出感知器的权重,使之实现目标函数。

五、感知器的实现代码
class Perceptron(object):
    def __init__(self, input_num, activator):
        '''
        初始化感知器,设置输入参数的个数,以及激活函数。
        激活函数的类型为double -> double
        '''
        self.activator = activator
        # 权重向量初始化为0
        self.weights = [0.0 for _ in range(input_num)]
        # 偏置项初始化为0
        self.bias = 0.0
    def __str__(self):
        '''
        打印学习到的权重、偏置项
        '''
        return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
    def predict(self, input_vec):
        '''
        输入向量,输出感知器的计算结果
        '''
        # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
        # 最后利用reduce求和
        return self.activator(
            reduce(lambda a, b: a + b,
                   map(lambda (x, w): x * w,  
                       zip(input_vec, self.weights))
                , 0.0) + self.bias)
    def train(self, input_vecs, labels, iteration, rate):
        '''
        输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
        '''
        for i in range(iteration):
            self._one_iteration(input_vecs, labels, rate)
    def _one_iteration(self, input_vecs, labels, rate):
        '''
        一次迭代,把所有的训练数据过一遍
        '''
        # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
        # 而每个训练样本是(input_vec, label)
        samples = zip(input_vecs, labels)
        # 对每个样本,按照感知器规则更新权重
        for (input_vec, label) in samples:
            # 计算感知器在当前权重下的输出
            output = self.predict(input_vec)
            # 更新权重
            self._update_weights(input_vec, output, label, rate)
    def _update_weights(self, input_vec, output, label, rate):
        '''
        按照感知器规则更新权重
        '''
        # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
        # 变成[(x1,w1),(x2,w2),(x3,w3),...]
        # 然后利用感知器规则更新权重
        delta = label - output
        self.weights = map(
            lambda (x, w): w + rate * delta * x,
            zip(input_vec, self.weights))
        # 更新bias
        self.bias += rate * delta

详细代码见git

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值