poj 3281 Dining

27人阅读 评论(0) 收藏 举报
分类:

Dining
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions:21024 Accepted: 9319

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: NF, and D 
Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: 
Cow 1: no meal 
Cow 2: Food #2, Drink #2 
Cow 3: Food #1, Drink #1 
Cow 4: Food #3, Drink #3 
The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

比较容易想到


#include <cstdio>
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;


const int MAX_D=505+5;
const int MAX_B=1000000+5;
const int INF=1e9;


int tot;


int head[MAX_D];
int iter[MAX_D];
int level[MAX_D];
struct node{
    int to;
    int cap;
    int rev;
    int next;
};
node edge[2*MAX_B];




void add_edge(int a,int b,int c){


    edge[tot].to=b;
    edge[tot].cap=c;
    edge[tot].rev=tot+1;
    edge[tot].next=head[a];
    head[a]=tot++;


    edge[tot].to=a;
    edge[tot].cap=0;
    edge[tot].rev=tot-1;
    edge[tot].next=head[b];
    head[b]=tot++;


}




void bfs(int s){
    memset(level,-1,sizeof(level));
    queue<int> que;
    level[s]=0;
    que.push(s);
    while(!que.empty()){
        int v=que.front();que.pop();
        for(int i=head[v];i!=0;i=edge[i].next){
            node &e=edge[i];
            if(e.cap>0&&level[e.to]<0){
                level[e.to]=level[v]+1;
                que.push(e.to);
            }
        }
    }
}


int dfs(int v,int t,int f){
    if(v==t)return f;
    for(int &i=iter[v];i!=0;i=edge[i].next){
        node &e = edge[i];
        if(e.cap>0&&level[v]<level[e.to]){
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0){
                e.cap-=d;
                edge[e.rev].cap+=d;
                return d;
            }
        }
    }


    return 0;
}


int max_flow(int s,int t){
    int flow=0;
    while(1){
        bfs(s);
        if(level[t]<0)return flow;
        for(int i=0;i<MAX_D;i++){
            iter[i]=head[i];
        }
        int f;
        while((f=dfs(s,t,INF))>0){
            flow+=f;
        }
    }
}




void solve(){
    tot=1;
    memset(head,0,sizeof(head));
    int N,F,D;
    scanf("%d%d%d",&N,&F,&D);
    for(int i=1;i<=N;i++){
        add_edge(i+2,i+N+2,1);
    }
    for(int i=1;i<=F;i++){
        add_edge(1,i+2*N+2,1);
    }
    for(int i=1;i<=D;i++){
        add_edge(i+2*N+F+2,2,1);
    }
    for(int i=1;i<=N;i++){
        int x,y;
        scanf("%d%d",&x,&y);
        while(x--){
            int z;
            scanf("%d",&z);
            add_edge(z+2*N+2,i+2,1);
        }
        while(y--){
            int z;
            scanf("%d",&z);
            add_edge(i+N+2,z+2*N+F+2,1);
        }
    }

    printf("%d",max_flow(1,2));

}


int main()
{
    solve();


    return 0;
}



查看评论

解题报告 之 POJ3281 Dining

解题报告 之 POJ 3281 Dining 最大流 经典构图 牛吃草问题 食物 饮料 最大分配
  • maxichu
  • maxichu
  • 2015-04-22 09:28:50
  • 1171

poj3281 - Dining

想看更多的解题报告:http://blog.csdn.net/wangjian8006/article/details/7870410                                ...
  • wangjian8006
  • wangjian8006
  • 2012-09-01 20:35:13
  • 3474

(POJ 3281)Dining --最大流,匹配建图,Dinic

Dining Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10755 Accepted: 4930...
  • STILLxjy
  • STILLxjy
  • 2016-07-30 12:34:29
  • 286

poj 3281 Dining(最大流)

poj 3281 DiningDescriptionCows are such finicky eaters. Each cow has a preference for certain foods ...
  • llx523113241
  • llx523113241
  • 2015-07-26 21:06:02
  • 651

poj3281 Dining-网络流最大流-多对一的匹配

poj3281 Dining Cows are such finicky eaters. Each cow has a preference for certain foods and drinks,...
  • ly59782
  • ly59782
  • 2016-10-18 14:24:31
  • 257

POJ 3281-Dining(最大流入门,建图详细解析)

ACM-ICPC 最大流入门题 建图详细解析
  • u010595112
  • u010595112
  • 2014-03-10 15:10:08
  • 1121

poj3281-最大流

题目开始以为可以用二分匹配解决,但是要和两边都求最大匹配,没办法解决。但是想到最大流可以解决二分匹配问题,那么就建图用网络流解决。 但是一开始是这样建图源点-food-牛-drink-汇点,这样虽然...
  • zhang20072844
  • zhang20072844
  • 2012-10-29 01:05:02
  • 2131

POJ - 3281 Dining 网络流

POJ - 3281 Dining  网络流 一、题意 POJ - 3281 Dining 农场里有n头牛,f种食物,n中饮料,每头牛有自己喜欢的食物和饮料类型,每种食物和饮料都只能分配...
  • Summer_via
  • Summer_via
  • 2016-07-02 11:22:56
  • 165

POJ 3281 Dining dinic

Dining Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10445   Accept...
  • aosakixuan
  • aosakixuan
  • 2015-05-01 10:47:04
  • 212

POJ 3281 Dining (网络流)

Description Cows are such finicky eaters. Each cow has a preference for certain foods and drink...
  • qq_26564523
  • qq_26564523
  • 2016-01-22 15:10:33
  • 127
    个人资料
    持之以恒
    等级:
    访问量: 1501
    积分: 722
    排名: 7万+
    文章存档
    最新评论