学习笔记

本文解析了LSB与MSB的概念,介绍了big-endian与little-endian字节序的区别,并探讨了它们如何影响数据在内存和寄存器中的表示。

LSB MSB 寄存器 big-endian little-endian

 

以下是在搜索相关资料后的个人理解

 

LSB: 寄存器中的最低位,权值最小

MSB: 寄存器中的最高位,权值最大

big-endian:对于(基本类型)类型空间大于一个字节的变量,其在内存中低地址存放高位字节数据

little-endian: 对于(基本类型)类型空间大于一个字节的变量,其在内存中低地址存放低位字节数据

 

寄存器中各个位的权值是固定的,不受字节序(big-endian/little-endian)的影响.

为保证数值变量(该变量占用空间大于一个字节)在寄存器和内存中表示的是同一个数值,

在向寄存器中加载数据时就需要一种位的对应关系。所以个人认为little-endian和big-endian

就是两种不同的对应关系。

 

对变量的位移操作也是不受字节序影响的(以前有过这种顾虑^_^),因为变量是被放到寄存器中进行相应操作的。

三维建模技术借助先进的图像处理手段,将二维影像转化为立体空间数据。在多种实现路径中,双摄像头视觉方案编码光投影技术具有代表性。前者通过布置两个成像单元从不同方位采集画面,依据视差原理空间几何关系推算深度数据;后者则向目标表面投射特定光栅,通过解析光栅形变反推三维轮廓。相位偏移法作为光栅技术的重要分支,采用多步渐进式光场调制策略,通过记录连续相位变化获取亚像素级三维信息。同步采用的互补二进制编码机制,通过优化光强分布模式有效解决相位跳变问题,显著提升重建数据的连续性。 成像系统的参数标定是三维数据生成的基础环节,需通过专用算法确定镜头焦距、像主点坐标及光学畸变系数等核心参数。立体校正则依据双相机空间几何关系,对采集图像进行投影变换,使对应像点分布于同一水平扫描线上,大幅降低立体匹配复杂度。在光栅系统中,相位对齐技术通过建立像素级相位映射关系,将二维相位场转换为三维坐标;而在立体视觉中,视差分析通过比对双视图对应像素偏移量,构建深度映射矩阵。最终通过点云融合算法,将离散空间坐标整合为连续曲面模型,该技术体系在工业检测、数字娱乐及沉浸式交互等领域具有重要应用价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值