解法 1:暴力法
菜鸡的我第一想法只能想到暴力法,遍历各种可能结果。
class Solution {
public:
string longestPalindrome(string s) {
string res="";//存放结果
string temp="";//存放子串
for(int i=0;i<s.length();i++)
{
for(int j=i;j<s.length();j++)
{
temp=temp+s[j];
string tem=temp;//tem存放子串反转结果
std::reverse(tem.begin(),tem.end());//反转
if(temp==tem)
res=res.length()>temp.length()?res:temp;
}
temp="";
}
return res;
}
};
该办法效率太低,所以力扣测试用例只能通过46个,后续的会超出时间限制
解法 2:
将字符串 s 反转得到字符串 rev,再求他们的最长公共子串,再判断该最长公共子串是否就是我们要找的最长回文子串。
class Solution {
public:
string longestPalindrome(string s) {
if(s.length()==1) return s;//大小为1的字符串必为回文串
string rev=s;//rev存放s反转结果
string res;//存放结果
std::reverse(rev.begin(),rev.end());
if(rev==s) return s;
int len=0;//存放回文子串的长度
for(int i=0;i<s.length();i++)//查找s与rev的最长公共子串
{
string temp;//存放待验证子串
for(int j=i;j<s.length();j++)
{
temp=temp+s[j];
if(len>=temp.length())
continue;
else if(rev.find(temp)!=-1)//在rev中找到temp
{
string q=temp;//q用来验证temp是否是回文子串
std::reverse(q.begin(),q.end());
if(q==temp)
{
len=temp.length();
res=temp;
}
}
else break;
}
temp="";
}
return res;
}
};
注:该方法虽然比暴力法高效,但是在查找最长公共子串的部分效率还是不够高,所以在力扣中最后一个测试用例会超出时间限制。
解法 3:动态规划
初始状态:
dp[i][i]=1; //单个字符是回文串
dp[i][i+1]=1 if s[i]=s[i+1]; //连续两个相同字符是回文串
实现代码:
class Solution {
public:
string longestPalindrome(string s) {
int len=s.size();
if(len==0||len==1)
return s;
int start=0;//回文串起始位置
int max=1;//回文串最大长度
vector<vector<int>> dp(len,vector<int>(len));//定义二维动态数组
for(int i=0;i<len;i++)//初始化状态
{
dp[i][i]=1;
if(i<len-1&&s[i]==s[i+1])
{
dp[i][i+1]=1;
max=2;
start=i;
}
}
for(int l=3;l<=len;l++)//l表示检索的子串长度,等于3表示先检索长度为3的子串
{
for(int i=0;i+l-1<len;i++)
{
int j=l+i-1;//终止字符位置
if(s[i]==s[j]&&dp[i+1][j-1]==1)//状态转移
{
dp[i][j]=1;
start=i;
max=l;
}
}
}
return s.substr(start,max);//获取最长回文子串
}
};
解法 4:中心扩展法
回文中心的两侧互为镜像。因此,回文可以从他的中心展开,并且只有 2n-1 个这样的中心(一个元素为中心的情况有 n 个,两个元素为中心的情况有 n-1 个)
实现代码:
class Solution {
public:
string longestPalindrome(string s) {
int len=s.size();
if(len==0||len==1)
return s;
int start=0;//记录回文子串起始位置
int end=0;//记录回文子串终止位置
int mlen=0;//记录最大回文子串的长度
for(int i=0;i<len;i++)
{
int len1=expendaroundcenter(s,i,i);//一个元素为中心
int len2=expendaroundcenter(s,i,i+1);//两个元素为中心
mlen=max(max(len1,len2),mlen);
if(mlen>end-start+1)
{
start=i-(mlen-1)/2;
end=i+mlen/2;
}
}
return s.substr(start,mlen);
//该函数的意思是获取从start开始长度为mlen长度的字符串
}
private:
int expendaroundcenter(string s,int left,int right)
//计算以left和right为中心的回文串长度
{
int L=left;
int R=right;
while(L>=0 && R<s.length() && s[R]==s[L])
{
L--;
R++;
}
return R-L-1;
}
};
解法 5:Manacher
这是一个专门用作处理最长回文子串的方法,思想很巧妙,比较难以理解,这里直接借用了别人的讲解方法。其实主要思想是,把给定的字符串的每一个字母当做中心,向两边扩展,这样来找最长的子回文串,这个叫中心扩展法,但是这个方法还要考虑到处理 abba 这种偶数个字符的回文串。Manacher 法将所有的字符串全部变成奇数个字符。
作者:chenlele
链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zui-chang-hui-wen-zi-chuan-c-by-gpe3dbjds1/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。