Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging

本文介绍了一种通过深度学习从眼底图像预测生物年龄的新方法,该方法在图像预处理、模型训练策略和损失函数设计上都有创新。作者通过将年龄预测作为分类任务而非回归,并使用联合损失函数,提高了预测准确性。实验表明,这种方法比基于脑MRI的预测更有效。
摘要由CSDN通过智能技术生成

Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging

论文地址:https://www.researchgate.net/publication/336391972_Biological_Age_Estimated_from_Retinal_Imaging_A_Novel_Biomarker_of_Aging
亮点:在训练前对图像进行预处理,突出了特征信息
提出了一种新颖的联合损失函数来训练模型


Biological Age Estimated from Retinal Imaging: A Novel Biomarker of Aging 是MICCAI 2019 中的一篇文章,最近正在做一些根据眼底图像的预测问题,所以学习一下这篇论文并记录。

作者通过深度学习的方法通过眼底图像来试图预测Biological age,先前大多使用脑MRI图像来预测Biological age,通过眼底图像进行预测的结果显示出了眼底图像与Biological age也很有关联性。
本文新颖的地方主要有三点:
第一,在将图像投入模型之前先对其进行了细节增强,效果很好。
第二,不同于寻常的年龄预测,文章并没有将其作为一个回归问题,而是当做分类问题来训练,非常巧妙。
第三,设计了一种联合损失函数。


在这里插入图片描述
上图给出了模型的结构&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值