49、自编码器:从基础到变分自编码器的深入解析

自编码器:从基础到变分自编码器的深入解析

1. 卷积自编码器实验

1.1 训练与结果展示

我们训练了一个仅含 20 个潜在变量的卷积自编码器,和之前一样训练了 50 个周期。此时模型仍在改进,但为了与之前的模型进行比较,我们在 50 个周期时停止训练。图 18 - 30 展示了测试集中的五个示例以及它们经过卷积自编码器解压后的版本。结果相当不错,解压后的图像虽与原图像不完全相同,但非常接近。

1.2 输入噪声实验

为了好玩,我们给解码器输入噪声。由于潜在变量是一个 7×7×3 的张量,所以噪声值也需要是相同形状的 3D 体积。图 18 - 31 展示了输入随机值张量到解码器阶段后生成的图像,结果是随机的斑点图像,对于随机输入来说,这似乎是合理的输出。

1.3 潜在变量混合实验

我们尝试混合卷积自编码器中的潜在变量。图 18 - 32 展示了使用与图 18 - 26 相同图像的网格,我们找到前两行中每个图像的潜在变量,将它们均匀混合,然后对插值后的变量进行解码以创建第三行的图像。结果有些模糊,不过有些图像能看出是上面两行图像的混合。图 18 - 33 展示了与之前图 18 - 27 中相同的三次混合过程中的多个步骤。每行的左右两端是对 MNIST 图像进行编码和解码后创建的图像,中间是混合它们的潜在变量然后解码的结果。这看起来并不比我们之前简单的自编码器好多少,说明即使有更多的潜在变量,当使用与训练样本差异过大的输入进行重建时,仍然会遇到问题。

1.4 新输入预测实验

我们给卷积神经网络输入低分辨率的老虎图像进行预测,结果如图 18 - 34 所示。如果眯着眼看,似乎

**卷积序列嵌入推荐模型(Caser)的Matlab实现解析** 卷积神经网络在序列数据处理中展现出卓越性能,尤其在时间序列分析与自然语言处理领域。Caser模型创新性地将卷积结构引入推荐系统,通过挖掘用户历史行为中的时序特征,构建动态兴趣画像,从而提升个性化推荐的精准度。 **模型架构与技术细节** 1. **双路径卷积设计**:模型采用水平与垂直两个方向的卷积结构。水平卷积聚焦于用户近期行为模式,提取短期兴趣特征;垂直卷积则分析历史交互的整体分布,刻画长期偏好倾向。两种特征经融合后形成完整的用户表征。 2. **序列向量化处理**:用户历史交互记录被编码为定长嵌入向量序列,每个向量对应项目的潜在特征。这种表示方法既能保留项目的语义信息,又可通过卷积运算挖掘项目间的关联规律。 3. **多尺度特征提取**:卷积层配备不同尺寸的滤波器核,分别捕获局部序列片段和全局维度关系。水平卷积沿时间轴滑动检测时序模式,垂直卷积在特征维度上进行交叉分析。 4. **特征压缩与强化**:池化层对卷积输出进行降维处理,通过最大值池化保留显著特征,或通过均值池化整合全局信息,在维持表征能力的同时提升计算效率。 5. **预测模块构建**:全连接层将抽象特征映射为预测分值,采用均方误差或交叉熵作为优化目标,通过梯度下降算法迭代调整模型参数,缩小预测值与真实反馈的差异。 **Matlab实现方案** 1. **模块化编程框架**:项目文件包含数据加载、网络构建、训练流程和性能评估四大核心模块,采用函数封装方式保证代码可复用性。 2. **数据标准化流程**:原始数据经矩阵化转换后,进行数值归一化与缺失值填补处理,形成符合模型输入规范的张量结构。 3. **网络组件配置**:依托深度学习工具箱,逐层定义卷积核数量、池化窗口尺寸、全连接节点数等结构参数,构建端到端的计算图谱。 4. **训练策略优化**:配置自适应动量优化器,采用动态学习率调整机制,结合早停法与权重衰减技术平衡模型收敛速度与泛化能力。 5. **评估体系建立**:通过批量推理生成推荐列表,综合计算准确率、覆盖率及多样性指标,采用交叉验证评估模型稳定性。 该实现方案充分发挥Matlab在矩阵运算与原型开发中的优势,为推荐算法研究提供可扩展的实验平台。通过调整网络深度、滤波器配置等超参数,可适应电商、社交网络等不同应用场景的个性化需求。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值