python 编码的那点事 1、python3默认编码是Unicode2、注释 # -*- coding:utf-8 -*- 意思问文件编码,文件编码与python3默认编码不是一回事,可以是不同的两种编码3、utf-8 ---> gbk :s="你好"s1=s.decode(utf-8).encode(gbk)gbk ---> utf-8 s="你好"s1=s.de...
目标检测之----fast R-CNN RoI pooling 是特殊的SPP pooling ,SPP pooling有多尺寸的网格1*1,2*2,4*4RoI pooling单一尺寸的网格如图只有4*4RoI梯度回传
吴恩达deeplearning 第一课第四周作业二 Deep Neural Network for Image Classification: ApplicationWhen you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this cour...
吴恩达deeplearning 第一课第四周作业二 Deep Neural Network for Image Classification: ApplicationYou will use use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classific...
ROI Pooling层 region proposal:给定一张输入image找出objects可能存在的所有位置。这一阶段的输出应该是一系列object可能位置的bounding box。这些通常称之为region proposals或者 regions of interest(ROI)。ROI pooling具体操作如下:根据输入image,将ROI映射到feature map对应位置; 将映射后的区域...
目标检测之SPP--spatial pyramid pooling layer crop就是从一个大图扣出网络输入大小的patch,比如227×227warp就是把一个边界框bounding box的内容resize成227×227但warp/crop这种预处理,导致的问题要么被拉伸变形、要么物体不全,限制了识别精确度。没太明白?说句人话就是,一张16:9比例的图片你硬是要Resize成1:1的图片,你说图片失真不?SPP Net训练和测试的方法基...
目标检测一之-----R-CNN R-CNNobject detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。R-CNN(Selective Search + CNN + SVM) SPP-net(ROI Pooling) Fast R-CNN(Selective Search + CNN + ROI)...
tf.argmin()与tf.reduce_min() tf.argmin()返回矩阵横列或者纵列的最小值的坐标,取决于第二个参数tf.argmin( input, axis=None(0是纵列 1是横列) name=None, dimension=None, output_type=tf.int64 )import tensorflow as tfx = tf.constant([[0, 2, 1], [2, 1, 3]])sess ...
np.newaxis np.newaxis----增加矩阵维度常用方法--将(10,)维度变为固定维度(10,1)的矩阵x=np.linspace(-0.5,0.5,10)print(x)print(x.shape)[-0.5 -0.38888889 -0.27777778 -0.16666667 -0.05555556 0.05555556 0.16666667 0.2777...
吴恩达机器学习--应用高斯分布开发异常检测算法 异常检测算法对于给定的数据集 x(1),x(2),...,x(m) ,有m个样本,每个样本有n个特征,建立概率模型 p(x),找出哪些特征出现的概率高,哪些特征出现的概率低。 p(x)=p(x_1)*p(x_2)*p(x_3)......*p(x_n) p(x)=第一个特征X_1的概率*第二个特征X_2的概率*第三个特征X_3的概率......*第n个特征X_n的概率 假设:每一个特征x...
高斯分布 高斯分布,也称为正态分布。通常如果我们认为变量 x 符合高斯分布 x~N(μ,σ2)则其概率密度函数为: :均值 :方差我们可以利用已有的数据来预测总体中的 μ 和 σ2 的计算方法如下:注:机器学习中对于方差我们通常只除以 m 而非统计学中的(m-1)。只要你有一个还算大的训练集,到底是选择使用 1/m 还是 1/(m-1)其实区别很小。在机器学习领域大...
吴恩达机器学习--降维 数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。 可以把任何维度的数据降到任何想要的维度。 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自己去发现了。 主成分分析(PCA)是最常见的降维算法。 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据都 投射到该向量上...
吴恩达K-means算法 K-Means 算法步骤1、选择 K 个随机的点,称为聚类中心(cluster centroids)2、把每个数据样本划分到最近的中心点那一簇; D(xi)=argmin||xi−μr||22r=1,2,...kselected 样本到哪个簇距离最小,就属于哪个簇。3、划分完后,更新每个簇的中心,即把该簇的所有数据点的坐标加起来去平均值。求中心点距离一般采用...
吴恩达机器学习SVM 核函数为了获得上图所示的判定边界,我们的模型可能是我们可以用一系列的新的特征 f 来替换模型中的每一项。例如令得到 hθ(x)=f1+f2+...+fn。然而,除了对原有的特征进行组合以外,有没有更好的方法来构造 f1,f2,f3?我们可以利用核函数来计算出新的特征。高斯核函数为实例 x 中所有特征与地标 l(1)之间的距离的和。我们通...
Linux 基础命令 cd <路径>cd命令用于切换当前工作目录至 dirName(目录参数)。其中 dirName 表示法可为绝对路径或相对路径。若目录名称省略,则变换至使用者的 home 目录 (也就是刚 login 时所在的目录)。cd /system/bin 表示切换到/system/bin路径下。 cd logs 表示切换到logs路径下。 cd / 表示切换到根目录。 cd ....
try except python中try/except/else/finally语句的完整格式如下所示:try: Normal execution blockexcept A: Exception A handleexcept B: Exception B handleexcept: Other exception handleelse: ...