swan777
码龄7年
关注
提问 私信
  • 博客:254,584
    动态:22
    254,606
    总访问量
  • 27
    原创
  • 1,092,790
    排名
  • 28
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:甘肃省
  • 加入CSDN时间: 2017-11-27
博客简介:

swan777的博客

查看详细资料
个人成就
  • 获得322次点赞
  • 内容获得18次评论
  • 获得1,106次收藏
  • 代码片获得661次分享
创作历程
  • 25篇
    2019年
  • 4篇
    2018年
成就勋章
TA的专栏
  • 笔记
    12篇
  • SVM
    1篇
  • 吴恩达机器学习
    5篇
  • K-means
    1篇
  • 降维
    1篇
  • 高斯分布
    1篇
  • 异常检测算法
    1篇
  • 目标检测
    4篇
  • 吴恩达DeepLearning
  • tensorflow
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python 编码的那点事

1、python3默认编码是Unicode2、注释 # -*- coding:utf-8 -*- 意思问文件编码,文件编码与python3默认编码不是一回事,可以是不同的两种编码3、utf-8 ---> gbk :s="你好"s1=s.decode(utf-8).encode(gbk)gbk ---> utf-8 s="你好"s1=s.de...
原创
发布博客 2019.08.16 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测之--Faster R-CNN

原创
发布博客 2019.08.11 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

目标检测之----fast R-CNN

RoI pooling 是特殊的SPP pooling ,SPP pooling有多尺寸的网格1*1,2*2,4*4RoI pooling单一尺寸的网格如图只有4*4RoI梯度回传
原创
发布博客 2019.08.10 ·
198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达deeplearning 第一课第四周作业二

Deep Neural Network for Image Classification: ApplicationWhen you finish this, you will have finished the last programming assignment of Week 4, and also the last programming assignment of this cour...
原创
发布博客 2019.08.09 ·
184 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达deeplearning 第一课第四周作业二

Deep Neural Network for Image Classification: ApplicationYou will use use the functions you'd implemented in the previous assignment to build a deep network, and apply it to cat vs non-cat classific...
原创
发布博客 2019.08.09 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

ROI Pooling层

region proposal:给定一张输入image找出objects可能存在的所有位置。这一阶段的输出应该是一系列object可能位置的bounding box。这些通常称之为region proposals或者 regions of interest(ROI)。ROI pooling具体操作如下:根据输入image,将ROI映射到feature map对应位置; 将映射后的区域...
原创
发布博客 2019.08.09 ·
281 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测之SPP--spatial pyramid pooling layer

crop就是从一个大图扣出网络输入大小的patch,比如227×227warp就是把一个边界框bounding box的内容resize成227×227但warp/crop这种预处理,导致的问题要么被拉伸变形、要么物体不全,限制了识别精确度。没太明白?说句人话就是,一张16:9比例的图片你硬是要Resize成1:1的图片,你说图片失真不?SPP Net训练和测试的方法基...
原创
发布博客 2019.08.04 ·
1119 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

目标检测一之-----R-CNN

R-CNNobject detection,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。所以,object detection要解决的问题就是物体在哪里以及是什么的整个流程问题。R-CNN(Selective Search + CNN + SVM) SPP-net(ROI Pooling) Fast R-CNN(Selective Search + CNN + ROI)...
原创
发布博客 2019.08.04 ·
463 阅读 ·
1 点赞 ·
1 评论 ·
3 收藏

tf.argmin()与tf.reduce_min()

tf.argmin()返回矩阵横列或者纵列的最小值的坐标,取决于第二个参数tf.argmin( input, axis=None(0是纵列 1是横列) name=None, dimension=None, output_type=tf.int64 )import tensorflow as tfx = tf.constant([[0, 2, 1], [2, 1, 3]])sess ...
原创
发布博客 2019.06.12 ·
1376 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

np.newaxis

np.newaxis----增加矩阵维度常用方法--将(10,)维度变为固定维度(10,1)的矩阵x=np.linspace(-0.5,0.5,10)print(x)print(x.shape)[-0.5 -0.38888889 -0.27777778 -0.16666667 -0.05555556 0.05555556 0.16666667 0.2777...
原创
发布博客 2019.06.03 ·
119 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达机器学习--应用高斯分布开发异常检测算法

异常检测算法对于给定的数据集 x(1),x(2),...,x(m) ,有m个样本,每个样本有n个特征,建立概率模型 p(x),找出哪些特征出现的概率高,哪些特征出现的概率低。 p(x)=p(x_1)*p(x_2)*p(x_3)......*p(x_n) p(x)=第一个特征X_1的概率*第二个特征X_2的概率*第三个特征X_3的概率......*第n个特征X_n的概率 假设:每一个特征x...
原创
发布博客 2019.05.21 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高斯分布

高斯分布,也称为正态分布。通常如果我们认为变量 x 符合高斯分布 x~N(μ,σ2)则其概率密度函数为: :均值 :方差我们可以利用已有的数据来预测总体中的 μ 和 σ2 的计算方法如下:注:机器学习中对于方差我们通常只除以 m 而非统计学中的(m-1)。只要你有一个还算大的训练集,到底是选择使用 1/m 还是 1/(m-1)其实区别很小。在机器学习领域大...
原创
发布博客 2019.05.21 ·
1336 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达机器学习--降维

数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快我们的学习算法。 可以把任何维度的数据降到任何想要的维度。 降维的算法只负责减少维数,新产生的特征的意义就必须由我们自己去发现了。 主成分分析(PCA)是最常见的降维算法。 在 PCA 中,我们要做的是找到一个方向向量(Vector direction),当我们把所有的数据都 投射到该向量上...
原创
发布博客 2019.05.20 ·
140 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达K-means算法

K-Means 算法步骤1、选择 K 个随机的点,称为聚类中心(cluster centroids)2、把每个数据样本划分到最近的中心点那一簇; D(xi)=argmin||xi−μr||22r=1,2,...kselected 样本到哪个簇距离最小,就属于哪个簇。3、划分完后,更新每个簇的中心,即把该簇的所有数据点的坐标加起来去平均值。求中心点距离一般采用...
原创
发布博客 2019.05.19 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

吴恩达机器学习SVM

核函数为了获得上图所示的判定边界,我们的模型可能是我们可以用一系列的新的特征 f 来替换模型中的每一项。例如令得到 hθ(x)=f1+f2+...+fn。然而,除了对原有的特征进行组合以外,有没有更好的方法来构造 f1,f2,f3?我们可以利用核函数来计算出新的特征。高斯核函数为实例 x 中所有特征与地标 l(1)之间的距离的和。我们通...
原创
发布博客 2019.05.19 ·
1234 阅读 ·
2 点赞 ·
0 评论 ·
7 收藏

过拟合相关问题

原创
发布博客 2019.05.18 ·
117 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux 基础命令

cd <路径>cd命令用于切换当前工作目录至 dirName(目录参数)。其中 dirName 表示法可为绝对路径或相对路径。若目录名称省略,则变换至使用者的 home 目录 (也就是刚 login 时所在的目录)。cd /system/bin 表示切换到/system/bin路径下。 cd logs 表示切换到logs路径下。 cd / 表示切换到根目录。 cd ....
原创
发布博客 2019.05.14 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

try except

python中try/except/else/finally语句的完整格式如下所示:try: Normal execution blockexcept A: Exception A handleexcept B: Exception B handleexcept: Other exception handleelse: ...
转载
发布博客 2019.04.16 ·
264 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多