算法之康托展开式(正规)

康托展开

  康托展开的公式是 X=an(n-1)!+an-1*(n-2)!+…+ai*(i-1)!+…+a2*1!+a1*0!* 其中,ai为当前未出现的元素中是排在第几个(从0开始)。
  
  

    这个公式可能看着让人头大,最好举个例子来说明一下。
    例如,有一个数组 s = ["A", "B", "C", "D"],它的一个排列 s1 = ["D", "B", "A", "C"],现在要把 s1 映射成 X。n 指的是数组的长度,
    也就是4,所以
            X(s1) = a4*3! + a3*2! + a2*1! + a1*0!

    关键问题是 a4、a3、a2 和 a1 等于啥?
"D"是第3大的元素,所以 a4 = 3。

    (2)、a3 = "B" 这个元素在子数组 ["B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,
    所以 a3 = 1。

    (3)、a2 = "A" 这个元素在子数组 ["A", "C"] 中是第几大的元素。"A"是第0大的元素,"C"是第1大的元素,所以 a2 = 0。

    (4)、a1 = "C" 这个元素在子数组 ["C"] 中是第几大的元素。"C" 是第0大的元素,所以 a1 = 0。(因为子数组只有1个元素,所以a1总是为0)

    所以,X(s1) = 3*3! + 1*2! + 0*1! + 0*0! = 20

A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5


通过康托逆展开生成全排列

  如果已知 s = ["A", "B", "C", "D"],X(s1) = 20,能否推出 s1 = ["D", "B", "A", "C"] 呢?
  因为已知 X(s1) = a4*3! + a3*2! + a2*1! + a1*0! = 20,所以问题变成由 20 能否唯一地映射出一组 a4、a3、a2、a1?如果不考虑 ai 的取值范围,有
3*3! + 1*2! + 0*1! + 0*0! = 20
2*3! + 4*2! + 0*1! + 0*0! = 20
1*3! + 7*2! + 0*1! + 0*0! = 20
0*3! + 10*2! + 0*1! + 0*0! = 20
0*3! + 0*2! + 20*1! + 0*0! = 20
等等。但是满足 0 <= ai <= n-1 的只有第一组。可以使用辗转相除的方法得到 ai,如下图所示:

这里写图片描述

知道了a4、a3、a2、a1的值,
(1)、就可以知道s1[0] 是子数组["A", "B", "C", "D"]中第3大的元素 "D",

(2)、s1[1] 是子数组 ["A", "B", "C"] 中第1大的元素"B",

(3)、s1[2] 是子数组 ["A", "C"] 中第0大的元素"A",

(4)、s[3] 是子数组 ["C"] 中第0大的元素"C"。

    所以s1 = ["D", "B", "A", "C"]。

 这样我们就能写出一个函数 Permutation3(),它可以返回  s 的第 m 个排列。

#include<iostream>
#include<algorithm>
#include<vector>
#include<cstdlib>
using namespace std;
class cantor{
public:
    int n;//字符串的长度
    string s;
    int pos;//字符串在全排列中的字典位置,从0开始
    vector<int>num;//所有的字符
    cantor(string s):s(s){n=s.size();}
    cantor(int n,int pos):n(n),pos(pos){
        int i;
        for(i=0;i<n;i++)
            num.push_back(i);
    }
    int fac(int);
    void encode();
    void decode();

};
int cantor::fac(int num){
    if(num==0) return 1;
        else return num*fac(num-1);
}
void cantor::encode(){
    int i,j,count;
    vector<int>vec(n);
    for(i=0;i<n;i++){
        count=0;
        for(j=i;j<n;j++)
            if(s[i]>s[j]) count++;  
        vec[n-i-1]=count;
                }
    pos=0;
    for(i=0;i<s.size();i++)
        pos+=vec[i]*fac(i); 
}
void cantor::decode(){
    int i;
    div_t divresult;
    for(i=n-1;i>=0;i--){
        divresult=div(pos,fac(i));求余数与除数
        s.push_back(num[divresult.quot]+'0');
        num.erase(num.begin()+divresult.quot);
        pos=divresult.rem;
            }
}
int main(){
    cantor test(4,2);
    test.decode();
    cout<<test.s<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值