swordboy_fire
码龄7年
关注
提问 私信
  • 博客:150,127
    150,127
    总访问量
  • 42
    原创
  • 2,299,044
    排名
  • 15
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2017-12-29
博客简介:

swordboy_fire的博客

查看详细资料
个人成就
  • 获得59次点赞
  • 内容获得28次评论
  • 获得174次收藏
  • 代码片获得676次分享
创作历程
  • 42篇
    2018年
成就勋章
TA的专栏
  • 快速解决小问题
    6篇
  • oj代码
    21篇
  • pta
  • PAT (Basic Level) Practice (中文
    21篇
  • 服务器
    2篇
  • django
    3篇
  • 数据结构
    1篇
  • 计算方法及程序实现
    9篇
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

曲线拟合

首先根据已知点的分布判断是几阶函数,再拟合出各次项系数。c++代码如下:#include "math.h"#include "stdio.h"#define N 7int main(){ float a[10][10], x[N + 1], y[N + 1], s, t[10], d, t1; int i, j, k, m = 2, l; //m为阶数 for(i=1;...
原创
发布博客 2018.10.21 ·
416 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

牛顿基本插值法

牛顿基本插值法又叫均差法,通过算出均差表求解拟合方程的各阶系数。c++ 代码如下:#include<stdio.h>using namespace std;int main(){ int i, k, n; float x[20], y[20], t, h, p; scanf("%d", &n); for (i = 0; i <= n; i++){...
原创
发布博客 2018.10.21 ·
3167 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

拉格朗日插值法

已知一组自变量和因变量,求某一个自变量对应的值,可以使用拉格朗日插值法。c++代码如下:#include <stdio.h>using namespace std;int main(void) { float x[20], y[20], p, t, s; int n, i, k; printf("请输入节点个数n+1
"); scanf("%d", &amp...
原创
发布博客 2018.10.21 ·
1060 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

高斯-塞德尔迭代法求解线性方程组解

高斯-塞德尔迭代法也是求解线性方程组解的一种方法,与雅可比不同之处在于,求解某个未知数的某代值时,直接使用上一未知数在该代的值。C++代码如下:#include<stdio.h>#include<math.h>using namespace std;float cha(float x[3], float y[3]){ float z; int i, ...
原创
发布博客 2018.10.21 ·
4569 阅读 ·
2 点赞 ·
1 评论 ·
23 收藏

雅可比迭代法

求解线性方程组可以使用迭代法,雅可比迭代法就是其中的一种,类似于求解方程组的迭代法,将Ax=b转换为迭代形式x=Cx+f,给定一组初始解,然后使用迭代方程组进行迭代。注意要先判断矩阵是否收敛c++代码如下:#include<stdio.h>#include<math.h>using namespace std;float cha(float x[3], ...
原创
发布博客 2018.10.21 ·
3444 阅读 ·
0 点赞 ·
1 评论 ·
13 收藏

LU分解法求解线性方程组

LU分解法是求解线性方程组的一种算法。先将系数矩阵分别转换成上三角矩阵U和下三角矩阵L,其中U(k,j)=a(k,j) - ∑L(k,m)*U(m,j)    m<k,L(i,k)=(a(i,k) - ∑L(i,m)*U(m,j))/(u(k,k))   m<k;求解Ly=b,b为因变量矩阵;求解Ux=y;c++代码如下:#include<stdio.h&g...
原创
发布博客 2018.10.21 ·
10196 阅读 ·
6 点赞 ·
1 评论 ·
36 收藏

列选主元的高斯消去法

列主元高斯消去法是求解线性方程组的直接方法,将系数矩阵化为上三角矩阵,使用当前行消去剩余行时,如果当前行的第一个元素非最大值,则需要与第一个元素为最大值的行进行元素互换,再使用当前行消去剩余行,然后回代方程求解。c++代码如下:#include<stdio.h>#include<math.h>#define N 3 //矩阵的阶数using name...
原创
发布博客 2018.10.21 ·
11657 阅读 ·
2 点赞 ·
0 评论 ·
25 收藏

牛顿法求解方程

牛顿法求解方程的核心是迭代,设立一个初始解,根据公式不断迭代,直至误差小于某个特定值。首先将方程化为求根形式,如:将x^3=a化为x^3-a=0,F(x)=x^3-a。迭代公式:x(i+1)=x(i)-F(x)/F'(x),下面使用牛顿迭代法求解a的立方根,c++代码如下:#include<iostream>#include<cmath>using ...
原创
发布博客 2018.10.21 ·
8917 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

对分法

对分法是解方程中比较快的方法,先确定边界,然后判断中间节点与目标的大小关系,如果不相等,则缩小边界,再次取中间节点,直至相等。c++代码如下:(代码中是求方程x*x*x - 2 * x*x - 4 * x - 7的根)#include<iostream>using namespace std;float f(float x){ return x*x*x - 2 * x*...
原创
发布博客 2018.10.21 ·
4414 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

上传代码到github的简单方法

首先在github官网注册一个账号,然后在下载git工具,官网直接下载就行。然后建立一个仓库建好仓库之后,将仓库地址拷贝下来回到本地电脑,到你要上传项目的文件上,点击右键 ,选择git bash here弹出命令行,执行git clone https://github.com/swordboy/example.git(https://github.com/sword...
原创
发布博客 2018.10.13 ·
1069 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

models.TABLE.objects.filter()与models.TABLE.objects.get()的区别

今天遇到这个坑了,折腾了好几个小时,记录一下。假如你是向去表中查询某一个数据,且查询条件对应字段的值是unique的,那么就用models.TABLE.objects.get(条件字段='值'),使用该方法只会返回一个queryset。models.TABLE.objects.get(条件字段='值')假如你是想通过某一个或者几个条件去查找多条数据,那么你就要使用models.TAB...
原创
发布博客 2018.10.03 ·
2644 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

稀疏矩阵转置中的快速转置

稀疏矩阵转置中的快速转置就是记录目标矩阵每一行的开始位置,在对原始矩阵的每个元素进行转置时,只需根据元素的所在列和目标矩阵对应行的开始位置,就可确定目标元素的位置,进而进行原始元素和目标元素相应值得交换,具体c语言代码如下:#include<iostream>#define MAXSIZE 12500typedef struct { int i, j; int e;...
原创
发布博客 2018.09.27 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

稀疏矩阵转置的一般方法

稀疏矩阵转置需要实现:(1)将矩阵的行列值转换;(2)将数组元素中的行坐标i,列坐标j互换;(3)重排转置后元素之间的次序;(1)(2)容易实现,对于(3),将原矩阵中的元素依次按照列的次序转换目标矩阵中。具体算法如下:#include<iostream>#define MAXSIZE 12500typedef struct { int i, j;...
原创
发布博客 2018.09.25 ·
1595 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

'ascii' codec can't encode characters in position 0-4: ordinal not in range(128),django项目出现的问题

在使用django的admin管理界面添加数据时出现的报错:'ascii' codec can't encode characters in position 0-4: ordinal not in range(128)原因是python2.X默认的编码是ASCII码,只能处理通过ASCII编码的字符,自然汉字就不行了。解决方法,在django项目的manage.py文件头部加上下面代...
原创
发布博客 2018.08.11 ·
758 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

1021 个位数统计(C语言)

1021 个位数统计 (15)(15 分)给定一个k位整数N = d~k-1~*10^k-1^ + ... + d~1~*10^1^ + d~0~ (0<=d~i~<=9, i=0,...,k-1, d~k-1~>0),请编写程序统计每种不同的个位数字出现的次数。例如:给定N = 100311,则有2个0,3个1,和1个3。输入格式:每个输入包含1个测试用例,即一个不...
原创
发布博客 2018.08.11 ·
1369 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

1020 月饼

月饼是中国人在中秋佳节时吃的一种传统食品,不同地区有许多不同风味的月饼。现给定所有种类月饼的库存量、总售价、以及市场的最大需求量,请你计算可以获得的最大收益是多少。注意:销售时允许取出一部分库存。样例给出的情形是这样的:假如我们有3种月饼,其库存量分别为18、15、10万吨,总售价分别为75、72、45亿元。如果市场的最大需求量只有20万吨,那么我们最大收益策略应该是卖出全部15万吨第2种月饼...
原创
发布博客 2018.08.07 ·
147 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

1019 数字黑洞 python

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。例如,我们从6767开始,将得到7766 - 6677 = 1089\ 9810 - 0189 = 9621\ 9621 - 1269 = 8352\...
原创
发布博客 2018.07.30 ·
380 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

部署django项目时,nginx静态文件配置通俗易懂的说明

静态文件指JS、css、图片等文件,在django项目投入生产中时,可以不必在setting中指明静态文件的路径,只需在nginx的站点配置中指明即可,详解如下:先上工程目录:opt----MyBlog     -----MyBlog     -----static            -----js           -----images          ...
原创
发布博客 2018.07.30 ·
2890 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

nginx: [emerg] directive "location" has no opening "{" in /etc/nginx/sites-enabled/default:14

错误信息:nginx: [emerg] directive "location" has no opening "{" in /etc/nginx/sites-enabled/default:14大致内容就是在配置文件里面的‘{’符号前面没有空格,检查该配置里面的‘{’在由前面没有空格的,在前面加个空格就行了。...
原创
发布博客 2018.07.30 ·
5613 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

The 'img' attribute has no file associated with it django加载图片时出现的错误

参考:https://stackoverflow.com/questions/39194097/the-photo-attribute-has-no-file-associated-with-it模板代码如下:<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8">...
原创
发布博客 2018.07.30 ·
3712 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏
加载更多