题意:给你n个数(a1....an)和常数k,m次询问,求出(l,r)这个区间中有多少个自区间把所有的值异或起来等于k。
解:
保存每个数前缀的异或,s[i]:表示a1~a(i-1)的异或。我们先考虑,从左到右扫过去,val=s[i]^k。在i之前有没有ai等于val呢? 如果有,说明中间某些值异或起来肯定为k。 因为 k^k=0, a[i]^0=a[i]。 又如果val在之前出现了多次呢?显然有这么多个区间可以异或起来等于k。
再说莫队,由于m询问次数过多,我们把m分成√ 个板块,m最大为10^5,√(m)≈316.,我们可以取400.
莫队的思想就是按照离线操作,先按左值/400,排序,把左值在一个根号区间的分在一起。然后,枚举这m次询问。而每次询问是不超过根号m区间的,所以时间复杂度为m*√ (m)。
#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define block 400
#define LL long long
struct node
{
int l,r,id;
node(int l=0,int r=0,int id=0):l(l),r(r),id(id){}
};
bool cmp(node x,node y)
{
if(x.l/400!=y.l/400)return x.l/block<y.l/block;
else return x.r<y.r;
}
struct node a[MAXN];
int s[MAXN];
LL ans[MAXN];
LL mp[MAXN*200];
int n,m,k,L,R,l,r;
int main()
{
int i;
scanf("%d%d%d",&n,&m,&k);
s[0]=0;
for(i=1;i<=n;i++)
{
int num;
scanf("%d",&num);
s[i]=s[i-1]^num;
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
a[i].l--;//s[i]存的是0~i-1的异或和
a[i].id=i;
}
sort(a+1,a+1+m,cmp);
LL temp=0;
int l=a[1].l;
int r=a[1].r;
for(i=l;i<=r;i++)
{
temp+=mp[s[i]^k];
mp[s[i]]++;
}
ans[a[1].id]=temp;
for(i=2;i<=m;i++)
{
L=a[i].l;
R=a[i].r;
while(l>L)
{
l--;
temp+=mp[s[l]^k];
mp[s[l]]++;
}
while(l<L)
{
mp[s[l]]--;
temp-=mp[s[l]^k];
l++;
}
while(r<R)
{
r++;
temp+=mp[s[r]^k];
mp[s[r]]++;
}
while(r>R)
{
mp[s[r]]--;
temp-=mp[s[r]^k];
r--;
}
ans[a[i].id]=temp;
}
for(i=1;i<=m;i++)
{
printf("%lld\n",ans[i]);
}
return 0;
}