codeforces 617E XOR and Favorite Number (莫队)

题意:给你n个数(a1....an)和常数k,m次询问,求出(l,r)这个区间中有多少个自区间把所有的值异或起来等于k。

解:

保存每个数前缀的异或,s[i]:表示a1~a(i-1)的异或。我们先考虑,从左到右扫过去,val=s[i]^k。在i之前有没有ai等于val呢? 如果有,说明中间某些值异或起来肯定为k。 因为 k^k=0, a[i]^0=a[i]。 又如果val在之前出现了多次呢?显然有这么多个区间可以异或起来等于k。

再说莫队,由于m询问次数过多,我们把m分成√ 个板块,m最大为10^5,√(m)≈316.,我们可以取400.

莫队的思想就是按照离线操作,先按左值/400,排序,把左值在一个根号区间的分在一起。然后,枚举这m次询问。而每次询问是不超过根号m区间的,所以时间复杂度为m*√ (m)。

#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define block 400
#define LL long long
struct node
{
    int l,r,id;
    node(int l=0,int r=0,int id=0):l(l),r(r),id(id){}
};
 bool cmp(node x,node y)
{
    if(x.l/400!=y.l/400)return x.l/block<y.l/block;
    else return x.r<y.r;
}
struct node a[MAXN];
int s[MAXN];
LL ans[MAXN];
LL mp[MAXN*200];
int n,m,k,L,R,l,r;
int main()
{
    int i;
   scanf("%d%d%d",&n,&m,&k);

        s[0]=0;
        for(i=1;i<=n;i++)
        {
            int num;
            scanf("%d",&num);
            s[i]=s[i-1]^num;
        }
        for(i=1;i<=m;i++)
        {
            scanf("%d%d",&a[i].l,&a[i].r);
          a[i].l--;//s[i]存的是0~i-1的异或和
            a[i].id=i;
        }
        sort(a+1,a+1+m,cmp);
        LL temp=0;
        int l=a[1].l;
        int r=a[1].r;
        for(i=l;i<=r;i++)
        {
            temp+=mp[s[i]^k];
            mp[s[i]]++;
        }
        ans[a[1].id]=temp;
        for(i=2;i<=m;i++)
        {
            L=a[i].l;
            R=a[i].r;
            while(l>L)
            {
                l--;
                temp+=mp[s[l]^k];
                mp[s[l]]++;
            }
            while(l<L)
            {
                 mp[s[l]]--;
                temp-=mp[s[l]^k];
                l++;
            }
            while(r<R)
            {
                r++;
                temp+=mp[s[r]^k];
                mp[s[r]]++;
            }

            while(r>R)
            {
                mp[s[r]]--;
                temp-=mp[s[r]^k];
                r--;
            }
            ans[a[i].id]=temp;
        }
        for(i=1;i<=m;i++)
        {
            printf("%lld\n",ans[i]);
        }

    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值