Codeforces Round #364 (Div. 2)E.Connecting Universities

本文介绍了一种解决树形结构中大学间网线最大长度问题的算法。通过一次深度优先搜索(DFS),计算每条边对总网线长度的贡献,即该边子树上的大学数量与剩余大学数量的较小值。

题意:一棵树有n个点,边长都为1,在这n个点中有2*k个大学,这些大学不重复。现在要给这些大学两两牵网线,问需要网线的最大长度。

分析:考虑每条边对答案的贡献,每条边对答案的贡献就是他的子树上学校的点的数目和剩下的学校的数目的较小值。

具体做法就是,一次dfs,记录下此点的子节点中有多少个学校(包括它自身),那么与它父亲节点相连的边的贡献为min(cnt[id],2*k-cnt[id])(cnt[id]!=0)。

这道题和2016多校1的:hdu5723类似 点击打开链接

 

#include<iostream>
#include<string>
#include<stdio.h>
#include<string.h>
#include<vector>
#include<math.h>
#include<queue>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
#define MAXN 200005
#define LL long long
#define INF 0x7f7f7f7f
const double eps = 1e-10;
struct edge
{
    LL en,next;
}Edge[MAXN*2];
LL p[MAXN],num,ans,k;
LL cnt[MAXN],vis[MAXN],flag[MAXN];
void init()
{
    memset(p,-1,sizeof(p));
    num=0;
}
void add(LL st,LL en)
{
    Edge[num].en=en;
    Edge[num].next=p[st];
    p[st]=num++;
}
void dfs(LL id)
{
    vis[id]=1;
    for(LL i=p[id];i!=-1;i=Edge[i].next)
    {
        LL en=Edge[i].en;
        if(!vis[en])
        {
            dfs(en);
            cnt[id]+=cnt[en];
            if(cnt[en]!=0)
            {
                ans+=min(2*k-cnt[en],cnt[en]);
            }
        }
    }
    if(flag[id])
        cnt[id]++;

}
int main()
{
   LL n,i;
   while(scanf("%I64d%I64d",&n,&k)!=EOF)
   {
       init();
       memset(flag,0,sizeof(flag));
       for(i=1;i<=2*k;i++)
       {
           LL id;
           scanf("%I64d",&id);
           flag[id]=1;
       }
       for(i=1;i<=n-1;i++)
       {
           LL u,v;
           scanf("%I64d%I64d",&u,&v);
           add(u,v);
           add(v,u);
       }
       memset(vis,0,sizeof(vis));
       memset(cnt,0,sizeof(cnt));
       ans=0;
       dfs(1);
       printf("%I64d\n",ans);
   }
    return 0;
}

 

 

 

 

 

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值