- 博客(1400)
- 资源 (7)
- 收藏
- 关注

原创 我为什么要写博客
我为什么要写博客2017年,我考入大学,开始了我的编程生涯。在考入大学之前,我对于计算机的使用,仅限于office软件,还有,开机与关机。选择这个专业也是书生意气,既然美国人在这方面割全世界的韭菜(比如苹果),那么我便要投入到反知识产权垄断的战斗中。当然,我对于我个人的能力是不抱幻想的,不过我可以和千万名同行在一起奋斗。然而,我的兴奋并没有持续多久。繁重的课业很快压垮了我。身边都是搞过竞赛的大牛(银牌起步),老师上课也默认大家已经掌握了一些基础知识,结果就是上课听的很嗨,但一旦写代码就会手足无措。我印
2020-05-21 23:36:48
13477
22

原创 本站最全《CSAPP》(第三版)答案合集
本站最全《CSAPP》(第三版)答案合集封面第一章第二章(一)第二章(二)第二章(三)第三章(一)第三章(二)第四章第五章第六章(一)第六章(二)第七章第八章第九章第十章第十一章第十二章(一)第十二章(二)开源万岁Long live open sourceДа здравствует открытый исходный кодLongue vie op...
2020-04-06 20:40:45
64923
12

原创 史上最全《计算机网络 自顶向下方法》答案合集
史上最全《计算机网络 自顶向下方法》答案合集封面:英文名:Computer Networking: A Top-Down Approach (7th Edition)答案第一章 (一)第一章 (二)第二章 (一)第二章 (二)第三章 (一)第三章 (二)第三章 (三)第四章第五章第六章 (一)第六章 (二)第七章第八章 (一)第八章 (二)第八章 (三)第八...
2020-03-13 23:11:20
108493
8
原创 NLP(V):实战分析推特及若干网站文本
这里我们使用beautifulsoup爬取wiki网页。首先安装requests。然后爬取网页。以下是一些将使用的小函数。
2023-03-14 17:36:40
1019
原创 NLP(III):n-gram语言模型
接下来我们分析生成的模型,其中一个指标是模型相对于测试集的困惑度(perplexity)。我们已经得到三个语言模型,现在我们可以使用这些模型生成一些虚拟的推文。当然,这些推文一眼bot。这里我们训练一元、二元以及三元模型(unigram, bigram, trigram)。请注意,n-gram模型是一个滑窗模型,因此在句首和句尾需要padding。
2023-03-09 09:37:25
714
原创 NLP(II):使用NLTK进行数据预处理
在上一节中我们使用原始的正则表达式对语料进行处理,显然,这是费力不讨好的工作。本着“不重复造轮子”的原则,这节开始我们用现成的轮子,调包侠出击。
2023-01-30 10:53:17
604
原创 NLP(I): 正则表达式
请注意,以下代码中的breaer_token需要自己去推特申请一个开发者账号,也就是说,你自己写代码时这个token和我的是不一样的,不要直接复制。
2022-12-31 23:15:21
307
原创 view size is not compatible with input tensor‘s size and stride
原因:对tensor使用view()时要求tensor在内存中地址是连续的,但有时不满足这个条件。解决方法:将地址变为连续的。在.view()前加上.contiguous()。在对pytorch tensor使用view()方法时报错。
2022-11-21 12:35:10
650
原创 conda安装pytorch_geometric
欲安装pytorch_geometric包,网上看几个帖子都是先安装几个(一般是四个)包云云,但查看官网。
2022-11-17 00:41:09
645
原创 设计模式【十二】:代理模式
访问对象时提供重定向。处于某种考虑,不希望客户端直接访问对象时,可采用代理模式。不改变被代理对象的代码。何时使用需要相对于简单指针来说更加强壮的对于对象的引用实现时技巧由于是对于对象的引用,在c++中可以通过代理模式重载->运算符。代理可以知晓其代理对象的类别。不过这种情况可能不完全符合代理模式的目的,见辨析。辨析:代理or装饰器?我们注意到,如果将代理模式的被代理对象由客户端设置,那么代码的形式非常接近于装饰器模式。鄙人认为,代理模式与装饰器模式有如下区别:...
2022-07-12 01:04:12
239
原创 设计模式【六】:适配器
类适配器适配器可override被适配者的方法。只引入一个额外对象,且没有指针重定向。对象适配器一个适配器可以适配多个被适配者(多维护几个指针即可)。缺点类适配器类适配是实体类。这限制了可扩展性。对象适配器由于通过指针适配,需要考虑被适配者的子类。严格来说这不算缺点,这是个特点。何时使用有时一些类(一般是工具类)的方法仅仅因为签名不符就不能用了。此时可以使用适配器套壳。...
2022-06-23 20:13:15
194
原创 设计模式【五】:单例模式
控制对单一实例的访问。减少命名空间的使用。单例模式可以视为对于全局变量的替代。允许对对象的细化。单例可以被继承,只需修改方法即可细化其单例。允许控制实例的数量。可以在单例类内添加计数器或修改方法,控制实例的数量。典型的单例模式可以视为实例数量为1的特殊情况。何时使用某些类需要被确保只有一个实例,这些类一般是系统的核心,比如某某manager。...
2022-06-21 21:00:32
148
原创 设计模式【四】:原型
优缺点运行时增删产品对象。动态地获得具体的对象,通过赋值即可,而非对每种对象都要继承一个子类然后实例化。一个对象的拷贝和一个对象的初始化过程相似,但不需要一个子类继承,也就是说更简单。减少继承。如果采用抽象工厂,相较于原型模式,其继承链一般更长。缺点原型类的每一个子类都必须实现Clone()方法。有时我们需要批量生产产品。这些产品只有细微差别,比如毕业证书。我们不必创建张三证书以及李四证书来继承证书类,我们只需生产证书的原型,比如张三证书,然后将名字修改为李四即可。...
2022-06-18 22:27:38
115
原创 数据科学【八】:SVD(一)
数据科学【八】:SVD(一)本文旨在给出SVD的使用方法。具体原理或SVD本身的代码实现请参考其他资料。SVD主要应用于数据特征提取,数据压缩等。数据准备将mnist存入csv使用fetch_openml可以获得常用数据集,包括mnist_784。import matplotlib.pyplot as pltfrom sklearn.datasets import fetch_openmlX, y = fetch_openml(name="mnist_784", version=1, r
2022-05-30 21:13:48
273
原创 设计模式【二】:构造器
设计模式【二】:构造器伪代码//定义一个自定义集合的构造器class setBuilder{public: virtual void buildSet(){} virtual void buildA(int a){} virtual void buildB(int b){} virtual mySet* getSet(){return 0;}protected: setBuilder();};//定义使用构造器的方法mySet* createMySet(setBuilder&
2022-05-28 21:22:38
158
原创 数据科学【七】:聚类(三)
数据科学【七】:聚类(三)本文数据为CIFAR-10 dataset加载数据集打开“batch_1”, 并随机显示一个图像:import pickleimport numpy as npimport randomwith open("data_batch_1", 'rb') as f_batch: data_dict = pickle.load(f_batch, encoding='bytes')image_datas = data_dict[b'data']random_id
2022-05-24 09:07:16
384
原创 数据科学【六】:聚类(二)
数据科学【六】:聚类(二)本文数据采用mnist dataset。获得聚类中心点使用cluster_centers_即可。示例:将mnist数据集分为十个聚类,并绘制各个中心点。import pandas as pdimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom sklearn.datasets import load_digitsmnist = load_digits()data_a =
2022-05-24 02:26:02
590
原创 数据科学【五】:聚类(一)
数据科学【五】:聚类(一)本文代码基于数据科学【四】:基本可视化(二) 。Kmeans 聚类示例:使用longitude, latitude, price, number_of_reviews四个特征对房产进行聚类,并将聚类在地图上可视化。不同聚类使用不同颜色显示。from sklearn.cluster import KMeansdf_h = airbnb_df[['latitude', 'longitude', 'price','number_of_reviews']]data_h = d
2022-05-22 21:19:50
589
原创 设计模式【一】:抽象工厂
设计模式【一】:抽象工厂伪代码//定义抽象工厂class abstractFactory{ createSet(){} createProductA(){}; createProductB(){};};//定义调用者productSet* makeProducts(abstractFactory& factory){ set = factory->createSet(); set.a = factory->createProductA(); set.b = fa
2022-05-21 23:20:36
378
原创 数据科学【四】:基本可视化(二)
数据科学【四】:基本可视化(二)本次数据使用爱彼迎租房数据(Airbnb dataset)。我们只采用listing.csv, 可以直接从这里下载。热度图绘制使用Folium包绘制热度图。由于它集成了leaflet,查看其绘制的图像可能需要翻墙。Folium安装pip install folium使用folium在地图上绘制热度图示例:在纽约地图上绘制各地区(各经纬度)房价平均值import foliumfrom folium.plugins import HeatMapimport
2022-05-20 09:08:37
766
原创 数据科学【三】:dataframe基本操作(二)
数据科学【三】:dataframe基本操作(二)google api使用google book api (https://developers.google.com/books/docs/overview)获得数据。也就是拼接url查询信息。可能需要翻墙。示例:查询相应主体的书籍注意:json.loads()返回的是json对象import requestsimport json""" Google Books Api See: https://developers.goo
2022-05-16 22:00:36
364
原创 数据科学【二】基本可视化(一)
数据科学【二】基本可视化本文章中示例代码在第一篇(https://blog.csdn.net/swy_swy_swy/article/details/124763216)的基础上实现。条形图使用barh函数绘制是否存活的平均年龄sur_avg = df[df.Survived==1]['Age'].mean()dead_avg = df[df.Survived==0]['Age'].mean()from matplotlib import pyplot as pltimport matpl
2022-05-15 00:39:05
151
原创 数据科学【一】:dataframe基本操作(一)
数据科学【一】:dataframe基本操作(一)数据准备我们采用祖传泰坦尼克数据集(https://www.kaggle.com/c/titanic/data)读入文件使用read_csv函数读入文件import pandas as pddf = pd.DataFrame(pd.read_csv("train.csv"))df.describe() PassengerId Survived Pclass A
2022-05-14 08:40:41
486
1
原创 华为校招记录
华为校招记录声明本记录内容真实本人非华为孝子或水军面试经历因人而异,本记录仅针对本人,是否有参考价值还请读者辨别,不喜勿喷本文谢绝一切方式的转载方便起见,所有时间均采用美国东部时间(EST)时间线2022.1.15 投简历2022.1.22 笔试2022.1.24 一面&二面2022.1.25 主管面2022.1.27 入池2022.1.29 offer call2022.1.30 正式offer具体项目笔试华为技术岗是三道题,分值100, 200, 300
2022-02-07 09:26:07
1870
2
原创 LaTeX Error: \usepackage before \documentclass.
LaTeX Error: \usepackage before \documentclass.如题。latex出现报错,原因在于\usepackage 命令写在了 \documentclass命令之前。解决方案:调整命令的顺序即可
2022-01-27 22:51:59
5923
arcanist.zip
2020-05-04
php源代码,目前最新版
2020-05-03
dafny-2.3.0.10506-x64-win.zip
2020-05-03
hsqldb-2.5.0.zip
2020-02-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人