深度学习发展历程
1950s
提出了感知机perceptron,但是由于感知机不能解决异或问题,很快被学术界否认了。
之后不久便提出了多层感知机,多层感知机成功的解决了异或问题,并被认为可以在拟合任意形状的分类面,但是由于多层感知机本身面临难以训练的问题,也没有得到广泛的认可。
1980s
1980年提出了反向传播算法(back propagation),为多层感知机的训练提供了理论上的解决方案,但是多层感知机在计算的过程中依然面临梯度消失、不容易收敛、计算速度慢等问题。
2006s
Geoffrey Hinton 发表一篇论文《Deep Belief Nets 深度置信网络》,提出了用逐层预训练的方式来训练神经网络,被认为是神经网络第三次兴起的开端。
2010s
GPU加速训练神经网络
Nevida 提出了cuda计算框架,迅速占领了深度学习的市场。
在当前阶段神经网络依然面临很多问题:
- 神经网络难以解释
- 可控性差
- 缺乏足够的理论依据
神经网络的分类
数据流向分类
- 前馈网络
- 反馈网络
- 递归网络
网络中神经元的组织形式
- 全连接
- 部分链接
网络中神经元的行为
- 简单神经网络
- 卷积神经网络
- 循环神经网络(RNN

本文概述了深度学习的发展历程,从感知机到深度神经网络的演进,探讨了多层感知机、卷积神经网络和循环神经网络等关键模型。同时,文章解释了深度学习的相关术语,如反向传播、特征、正则化等,并指出当前神经网络面临的问题和挑战。
最低0.47元/天 解锁文章
931

被折叠的 条评论
为什么被折叠?



