深度学习基础(综述及名词解释)

本文概述了深度学习的发展历程,从感知机到深度神经网络的演进,探讨了多层感知机、卷积神经网络和循环神经网络等关键模型。同时,文章解释了深度学习的相关术语,如反向传播、特征、正则化等,并指出当前神经网络面临的问题和挑战。
摘要由CSDN通过智能技术生成

深度学习发展历程

1950s
提出了感知机perceptron,但是由于感知机不能解决异或问题,很快被学术界否认了。
之后不久便提出了多层感知机,多层感知机成功的解决了异或问题,并被认为可以在拟合任意形状的分类面,但是由于多层感知机本身面临难以训练的问题,也没有得到广泛的认可。

1980s
1980年提出了反向传播算法(back propagation),为多层感知机的训练提供了理论上的解决方案,但是多层感知机在计算的过程中依然面临梯度消失、不容易收敛、计算速度慢等问题。

2006s
Geoffrey Hinton 发表一篇论文《Deep Belief Nets 深度置信网络》,提出了用逐层预训练的方式来训练神经网络,被认为是神经网络第三次兴起的开端。

2010s
GPU加速训练神经网络
Nevida 提出了cuda计算框架,迅速占领了深度学习的市场。

在当前阶段神经网络依然面临很多问题:

  • 神经网络难以解释
  • 可控性差
  • 缺乏足够的理论依据

神经网络的分类

数据流向分类

  • 前馈网络
  • 反馈网络
  • 递归网络

网络中神经元的组织形式

  • 全连接
  • 部分链接

网络中神经元的行为

  • 简单神经网络
  • 卷积神经网络
  • 循环神经网络(RNN
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值