C++第13周项目5 - 类的组合与继承

课程首页地址:http://blog.csdn.net/sxhelijian/article/details/7910565,本周题目链接:http://blog.csdn.net/sxhelijian/article/details/8953304


【项目5(选做)】类的组合与继承
(1)先建立一个Point(点)类,包含数据成员x,y(坐标点);
(2)以Point为基类,派生出一个Circle(圆)类,增加数据成员(半径),基类的成员表示圆心;
(3)编写上述两类中的构造、析构函数及必要的输入输出函数
(4)定义友元函数int locate,判断点p在圆c上、圆c内或圆c外,返回值<0圆内,==0圆上,>0 圆外;
(5)重载关系运算符(6种)运算符,使之能够按圆的面积比较两个圆的大小;
(6)给定一点p,求出该点与圆心相连成的直线与圆的两个交点并输出

下面给出用于测试的main()函数,涉及到的类请自行定义

int main( )
{
	Circle c1(3,2,4),c2(4,5,5);      //c2应该大于c1
	Point p1(1,1),p2(3,-2),p3(7,3);  //分别位于c1内、上、外


	cout<<"圆c1: "<<c1;
	cout<<"点p1: "<<p1;
	cout<<"点p1在圆c1之"<<((locate(p1, c1)>0)?"外":((locate(p1, c1)<0)?"内":"上"))<<endl;
	cout<<"点p2: "<<p2;
	cout<<"点p2在圆c1之"<<((locate(p2, c1)>0)?"外":((locate(p2, c1)<0)?"内":"上"))<<endl;	
	cout<<"点p3: "<<p3;
	cout<<"点p3在圆c1之"<<((locate(p3, c1)>0)?"外":((locate(p3, c1)<0)?"内":"上"))<<endl;
	cout<<endl; 


	cout<<"圆c1: "<<c1;
	if(c1>c2) cout<<"大于"<<endl;
	if(c1<c2) cout<<"小于"<<endl; 
	if(c1>=c2) cout<<"大于等于"<<endl;
	if(c1<=c2) cout<<"小于等于"<<endl; 
	if(c1==c2) cout<<"等于"<<endl; 
	if(c1!=c2) cout<<"不等于"<<endl; 
	cout<<"圆c2: "<<c1;
	cout<<endl; 


	Point p4,p5;
	crossover_point1(p1,c1, p4, p5);


	cout<<"点p1: "<<p1;
	cout<<"与圆c1: "<<c1;
	cout<<"的圆心相连,与圆交于两点,分别是:"<<endl;
	cout<<"交点: "<<p4;
	cout<<"交点: "<<p5;
	cout<<endl; 
	return 0;
}

针对4楼的疑问,加一张图,是(6)求解方式的说明。


参考解答:

#include <iostream>
#include<Cmath>
using namespace std;
class Point
{
public:
	Point(double x=0,double y=0);		//构造函数
	double distance(const Point &p) const;	//求距离
	double getx() const {return x;} 
	double gety() const {return y;} 
	void setx(double x1){x=x1;}
	void sety(double y1){y=y1;}
	friend ostream & operator<<(ostream &,const Point &);//重载运算符“<<”
protected:										 //受保护成员
	double x,y;
};


//Point的构造函数
Point::Point(double a,double b):x(a),y(b){}

double Point::distance(const Point &p) const	//求距离
{
	double dx = x-p.x;
	double dy = y-p.y;
	return sqrt(dx*dx+dy*dy);
}

ostream & operator<<(ostream &output,const Point &p)
{
	output<<"["<<p.x<<","<<p.y<<"]"<<endl;
	return output;
}

class Circle:public Point //circle是Point类的公用派生类
{
public:
	Circle(double x=0,double y=0,double r=0); //构造函数
	double area ( ) const; //计算圆面积
	friend ostream &operator<<(ostream &,const Circle &);//重载运算符“<<”
	friend int locate(const Point &p, const Circle &c); //判断点p在圆上、圆内或圆外,返回值:<0圆内,==0圆上,>0 圆外
	//重载关系运算符(种)运算符,使之能够按圆的面积比较两个圆的大小;
	bool operator>(const Circle &);
	bool operator<(const Circle &);
	bool operator>=(const Circle &);
	bool operator<=(const Circle &);
	bool operator==(const Circle &);
	bool operator!=(const Circle &);
	//给定一点p,求出该点与圆c的圆心相连成的直线与圆的两个交点p1和p2(为了带回计算结果,p1和p2需要声明为引用)
	friend void crossover_point(Point &p,Circle &c, Point &p1,Point &p2 ) ;
protected:
	double radius;
};

//定义构造函数,对圆心坐标和半径初始化
Circle::Circle(double a,double b,double r):Point(a,b),radius(r){ }

//计算圆面积
double Circle::area( ) const
{
	return 3.14159*radius*radius;
}

//重载运算符“<<”,使之按规定的形式输出圆的信息
ostream &operator<<(ostream &output,const Circle &c)
{
	output<<"Center=["<<c.x<<", "<<c.y<<"], r="<<c.radius<<endl;
	return output;
}

//判断点p在圆内、圆c内或圆c外
int locate(const Point &p, const Circle &c)
{
	const Point cp(c.x,c.y); //圆心
	double d = cp.distance(p);
	if (abs(d - c.radius) < 1e-7)
		return 0;  //相等
	else if (d < c.radius)
		return -1;  //圆内
	else 
		return 1;  //圆外
}

//重载关系运算符(种)运算符,使之能够按圆的面积比较两个圆的大小;
bool Circle::operator>(const Circle &c)
{
	return (this->radius - c.radius) > 1e-7;
}

bool Circle::operator<(const Circle &c)
{
	return (c.radius - this->radius) > 1e-7;
}

bool Circle::operator>=(const Circle &c)
{
	return !(*this < c);
}

bool Circle::operator<=(const Circle &c)
{
	return !(*this > c);
}

bool Circle::operator==(const Circle &c)
{
	return abs(this->radius - c.radius) < 1e-7;
}

bool Circle::operator!=(const Circle &c)
{
	return abs(this->radius - c.radius) > 1e-7;
}

//给定一点p,求出该点与圆c的圆心相连成的直线与圆的两个交点p1和p2(为了带回计算结果,p1和p2需要声明为引用)
void crossover_point(Point &p, Circle &c, Point &p1,Point &p2 )
{
	p1.setx (c.getx() + sqrt(c.radius*c.radius/(1+((c.gety()-p.gety())/(c.getx()-p.getx()))*((c.gety()-p.gety())/(c.getx()-p.getx())))));
	p2.setx (c.getx() - sqrt(c.radius*c.radius/(1+((c.gety()-p.gety())/(c.getx()-p.getx()))*((c.gety()-p.gety())/(c.getx()-p.getx())))));
	p1.sety (p.gety() + (p1.getx() -p.getx())*(c.gety()-p.gety())/(c.getx()-p.getx()));
	p2.sety (p.gety() + (p2.getx() -p.getx())*(c.gety()-p.gety())/(c.getx()-p.getx()));
}

int main( )
{
	Circle c1(3,2,4),c2(4,5,5);      //c2应该大于c1
	Point p1(1,1),p2(3,-2),p3(7,3);  //分别位于c1内、上、外

	cout<<"圆c1: "<<c1;
	cout<<"点p1: "<<p1;
	cout<<"点p1在圆c1之"<<((locate(p1, c1)>0)?"外":((locate(p1, c1)<0)?"内":"上"))<<endl;
	cout<<"点p2: "<<p2;
	cout<<"点p2在圆c1之"<<((locate(p2, c1)>0)?"外":((locate(p2, c1)<0)?"内":"上"))<<endl;	
	cout<<"点p3: "<<p3;
	cout<<"点p3在圆c1之"<<((locate(p3, c1)>0)?"外":((locate(p3, c1)<0)?"内":"上"))<<endl;
	cout<<endl; 

	cout<<"圆c1: "<<c1;
	if(c1>c2) cout<<"大于"<<endl;
	if(c1<c2) cout<<"小于"<<endl; 
	if(c1>=c2) cout<<"大于等于"<<endl;
	if(c1<=c2) cout<<"小于等于"<<endl; 
	if(c1==c2) cout<<"等于"<<endl; 
	if(c1!=c2) cout<<"不等于"<<endl; 
	cout<<"圆c2: "<<c2;
	cout<<endl; 

	Point p4,p5;
	crossover_point(p1,c1, p4, p5);

	cout<<"点p1: "<<p1;
	cout<<"与圆c1: "<<c1;
	cout<<"的圆心相连,与圆交于两点,分别是:"<<endl;
	cout<<"交点: "<<p4;
	cout<<"交点: "<<p5;
	cout<<endl; 

	return 0;
}


再一种解法:

#include <iostream>
#include<Cmath>
using namespace std;
class Point
{
public:
	Point(double x=0,double y=0);		//构造函数
	double distance(const Point &p) const;	//求距离
	double getx() const{return x;}
	double gety() const{return y;}
	void setx(double x1){x=x1;}
	void sety(double y1){y=y1;}
	friend ostream & operator<<(ostream &,const Point &);//重载运算符“<<”
protected:										 //受保护成员
	double x,y;
};


//Point的构造函数
Point::Point(double a,double b):x(a),y(b){}

double Point::distance(const Point &p) const	//求距离
{
	double dx = x-p.x;
	double dy = y-p.y;
	return sqrt(dx*dx+dy*dy);
}

ostream & operator<<(ostream &output,const Point &p)
{
	output<<"["<<p.x<<","<<p.y<<"]"<<endl;
	return output;
}

struct Two_points   //专为crossover_point()函数返回值定义的结构体
{
	Point p1;
	Point p2;
};

class Circle:public Point //circle是Point类的公用派生类
{
public:
	Circle(double x=0,double y=0,double r=0); //构造函数
	double area ( ) const; //计算圆面积
	friend ostream &operator<<(ostream &,const Circle &);//重载运算符“<<”
	friend int locate(const Point &p, const Circle &c); //判断点p在圆上、圆内或圆外,返回值:<0圆内,==0圆上,>0 圆外
	//重载关系运算符(种)运算符,使之能够按圆的面积比较两个圆的大小;
	bool operator>(const Circle &);
	bool operator<(const Circle &);
	bool operator>=(const Circle &);
	bool operator<=(const Circle &);
	bool operator==(const Circle &);
	bool operator!=(const Circle &);
	//再给一种解法:给定一点p,求出该点与圆c的圆心相连成的直线与圆的两个交点(返回Two_points型值)
	Two_points crossover_point(Point &p);
protected:
	double radius;
};

//定义构造函数,对圆心坐标和半径初始化
Circle::Circle(double a,double b,double r):Point(a,b),radius(r){ }

//计算圆面积
double Circle::area( ) const
{
	return 3.14159*radius*radius;
}

//重载运算符“<<”,使之按规定的形式输出圆的信息
ostream &operator<<(ostream &output,const Circle &c)
{
	output<<"Center=["<<c.x<<", "<<c.y<<"], r="<<c.radius<<endl;
	return output;
}

//判断点p在圆内、圆c内或圆c外
int locate(const Point &p, const Circle &c)
{
	const Point cp(c.x,c.y); //圆心
	double d = cp.distance(p);
	if (abs(d - c.radius) < 1e-7)
		return 0;  //相等
	else if (d < c.radius)
		return -1;  //圆内
	else
		return 1;  //圆外
}

//重载关系运算符(种)运算符,使之能够按圆的面积比较两个圆的大小;
bool Circle::operator>(const Circle &c)
{
	return (this->radius - c.radius) > 1e-7;
}

bool Circle::operator<(const Circle &c)
{
	return (c.radius - this->radius) > 1e-7;
}

bool Circle::operator>=(const Circle &c)
{
	return !(*this < c);
}

bool Circle::operator<=(const Circle &c)
{
	return !(*this > c);
}

bool Circle::operator==(const Circle &c)
{
	return abs(this->radius - c.radius) < 1e-7;
}

bool Circle::operator!=(const Circle &c)
{
	return abs(this->radius - c.radius) > 1e-7;
}

//给定一点p,求出该点与圆的圆心相连成的直线与圆的两个交点(返回Two_points型值)
Two_points Circle::crossover_point(Point &p)
{
	Two_points pp;
	pp.p1.setx ( x + sqrt(radius*radius/(1+((y-p.gety())/(x-p.getx()))*((y-p.gety())/(x-p.getx())))));
	pp.p2.setx ( x - sqrt(radius*radius/(1+((y-p.gety())/(x-p.getx()))*((y-p.gety())/(x-p.getx())))));
	pp.p1.sety ( p.gety() + (pp.p1.getx() -p.getx())*(y-p.gety())/(x-p.getx()));
	pp.p2.sety ( p.gety() + (pp.p2.getx() -p.getx())*(y-p.gety())/(x-p.getx()));
	return pp;
}

int main( )
{
	Circle c1(3,2,4),c2(4,5,5);      //c2应该大于c1
	Point p1(1,1),p2(3,-2),p3(7,3);  //分别位于c1内、上、外

	cout<<"圆c1: "<<c1;
	cout<<"点p1: "<<p1;
	cout<<"点p1在圆c1之"<<((locate(p1, c1)>0)?"外":((locate(p1, c1)<0)?"内":"上"))<<endl;
	cout<<"点p2: "<<p2;
	cout<<"点p2在圆c1之"<<((locate(p2, c1)>0)?"外":((locate(p2, c1)<0)?"内":"上"))<<endl;
	cout<<"点p3: "<<p3;
	cout<<"点p3在圆c1之"<<((locate(p3, c1)>0)?"外":((locate(p3, c1)<0)?"内":"上"))<<endl;
	cout<<endl;

	cout<<"圆c1: "<<c1;
	if(c1>c2) cout<<"大于"<<endl;
	if(c1<c2) cout<<"小于"<<endl;
	if(c1>=c2) cout<<"大于等于"<<endl;
	if(c1<=c2) cout<<"小于等于"<<endl;
	if(c1==c2) cout<<"等于"<<endl;
	if(c1!=c2) cout<<"不等于"<<endl;
	cout<<"圆c2: "<<c2;
	cout<<endl;

	cout<<"用另外一种方法求交点:"<<endl;
	Two_points twoPoint = c1.crossover_point(p1);
	cout<<"点p1: "<<p1;
	cout<<"与圆c1: "<<c1;
	cout<<"的圆心相连,与圆交于两点,分别是:"<<endl;
	cout<<"交点: "<<twoPoint.p1;
	cout<<"交点: "<<twoPoint.p2;
	return 0;
}


发布了2342 篇原创文章 · 获赞 4692 · 访问量 852万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览