sxjcfrd
码龄21年
关注
提问 私信
  • 博客:28,270
    28,270
    总访问量
  • 10
    原创
  • 2,113,886
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2003-07-27
博客简介:

sxjcfrd的博客

查看详细资料
个人成就
  • 获得6次点赞
  • 内容获得4次评论
  • 获得52次收藏
创作历程
  • 1篇
    2021年
  • 3篇
    2020年
  • 7篇
    2018年
成就勋章
兴趣领域 设置
  • 大数据
    hadoopspark
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

梯度下降法解决的数学问题描述

梯度下降法的从0开始分析梯度下降法解决的数学问题描述新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入梯度下降法解决的数学问题描述有多个数据集[x11x12x1j..x1ny1x21x22x2j..x2ny2xi1xi2
原创
发布博客 2021.12.17 ·
152 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

理解RCNN的思路整理(待补充代码)

理解RCNN的思路整理(待补充代码)RCNN中了解的概念RCNN的最主要的核心思想RCNN核心思路实现的难点RCNN难点解决思路为了提高识别率,有哪些考虑完整的训练过程生成原始训练集特征提取训练模型预测过程RCNN中了解的概念RCNN的最主要的核心思想1、训练一个网络,输入一个最多仅含有一个主体的图片或图片碎片(包含大部分信息)后,可以自动预测出该图片中是否有主体,并且输出主体对象的中心位置与该图片中心的偏移量(经过归一化)。输入:红框内的图片输出:绿框和红框的偏移量(经过归一化)和红框内主体对象
原创
发布博客 2020.06.25 ·
237 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

手写神经网络解决解决Mnist数字集(改造为批量处理)

#批量处理代码的修改工作主要在批量计算梯度和批量更新权值上##批量输入后,如何使用numpy矩阵计算的方法计算各权值梯度,提高计算速度 def backprop(self, x, y): #x为多维矩阵。每列为一个x值。 y为多维矩阵。每列为一个y值。 batch_num=x.shape[1] #print(x.shape) #print(y.shape) """创建两个变量,用来存储所有b值和所有w值对应的梯度值
原创
发布博客 2020.06.24 ·
322 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

手写神经网络解决解决Mnist数字集

手写神经网络解决解决Mnist数字集Mnist数据集介绍简单神经网络的几个重要部分激励函数:sigmoidBP神经网络类:BPNetwork前向计算:BPNetwork:feedforward功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入
原创
发布博客 2020.06.21 ·
618 阅读 ·
1 点赞 ·
1 评论 ·
8 收藏

conda 常见命令

安装anaconda成功,执行命令jupyter notebook。发现只能本机使用,而我自己买的是vps,有独立的ip地址,怎么配置才能使用外网ip访问?访问jupyter官网,发现通过命令可以配置jupyter。具体步骤如下:1.使用命令 jupyter notebook --generate-config 产生配置文件。2.编辑配置文件jupyter_notebook_config...
原创
发布博客 2018.09.24 ·
487 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Hello TensorFlow

import tensorflow as tfnode1 = tf.constant(3.0, dtype=tf.float32)node2 = tf.constant(4.0)# also tf.float32 implicitlyprint(node1, node2)sess = tf.Session()print(sess.run([node1, node2]))node3 = ...
原创
发布博客 2018.09.24 ·
139 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

sklearn 和 bagging 示例代码

sklearn 和 bagging 示例代码from sklearn.metrics import accuracy_scorefrom sklearn.ensemble import BaggingClassifierfrom sklearn.tree import DecisionTreeClassifierbag_clf = BaggingClassifier( DecisionT...
原创
发布博客 2018.09.24 ·
2043 阅读 ·
1 点赞 ·
2 评论 ·
6 收藏

特征工程的主要内容(特征构建、特征抽取和特征选择)

1、将分类变量转换为数值编号,才可以被处理import pandas as pd import numpy as np from sklearn import preprocessing用LabelEncoder对不同的犯罪类型编号 leCrime = preprocessing.LabelEncoder() crime = leCrime.fit_transform(train....
原创
发布博客 2018.09.13 ·
4468 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Sklearn常用特征提取和处理方法

1、将分类变量转换为数值编号,才可以被处理import pandas as pd import numpy as np from sklearn import preprocessing用LabelEncoder对不同的犯罪类型编号 leCrime = preprocessing.LabelEncoder() crime = leCrime.fit_transform(train....
原创
发布博客 2018.09.13 ·
4881 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

常用分类问题的算法-朴素贝叶斯分类器(Naive Bayes Classifiers)

朴素贝叶斯分类器是分类算法集合中基于贝叶斯理论的一种算法。它不是单一存在的,而是一个算法家族,在这个算法家族中它们都有共同的规则。例如每个被分类的特征对与其他的特征对都是相互独立的。朴素贝叶斯分类器的核心思想是: 1、将所有特征的取值看成已经发生的事件 2、将因变量属于某个分类也看成所有特征出现条件下的概率事件去判断。将分类问题转换为计算Xi出现的情况下 Yi 发生的概率(即为 P(Yi|...
原创
发布博客 2018.09.13 ·
2900 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习建模基本过程

机器学习建模基本过程机器学习建模基本过程:1. 实际问题抽象成数学问题这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。2. 获取数据获取数据包括获取原始数据以及从原始数据中经过特征工程从原始数据中提取训练、测试数据。机器学习比赛中原始数据都是直接提供的,但是实际问题需要自己获得原始...
转载
发布博客 2018.09.12 ·
12023 阅读 ·
3 点赞 ·
1 评论 ·
34 收藏