高等数学学习笔记DAY9

函数的极限

函数极限的性质

与收敛数列的性质相比较,可得函数极限的一些相应性质.它们都可以根据函数极限的定义,运用类似于证明收敛数列性质的证明方法证明.由于函数极限的定义按自变量的变化过程不同有各种形式,下面仅以" lim ⁡ x → x 0 f ( x ) \lim_{x\to x_0}f(x) limxx0f(x)"这种形式为代表给出关于函数极限的一些定理,至于其他形式的定理只要稍作改变即可.

定理1(函数极限的唯一性)

如果 lim ⁡ x → x 0 \lim_{x\to x_0} limxx0 存在,那么极限唯一.

定理2(函数极限的局部有界性)

如果 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A,那么存在常数 M > 0 M>0 M>0 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) ∣ ≤ M |f(x)|\leq M f(x)M.

证:因为 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A,所以取 ε = 1 \varepsilon=1 ε=1,则 ∃   δ > 0 \exists\ \delta>0  δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) − A ∣ < 1 ⇒ ∣ f ( x ) ∣ ≤ ∣ f ( x ) − A ∣ + ∣ A ∣ < ∣ A ∣ + 1 , |f(x)-A|<1\Rightarrow|f(x)|\leq|f(x)-A|+|A|<|A|+1, f(x)A<1f(x)f(x)A+A<A+1, M = ∣ A ∣ + 1 M=|A|+1 M=A+1,则定理 2 2 2 就获得证明.

定理3(函数极限的局部保号性)

如果 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A,且 A > 0 A>0 A>0(或 A < 0 A<0 A<0),那么存在常数 δ > 0 \delta>0 δ>0,使得当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 f ( x ) > 0 f(x)>0 f(x)>0(或 f ( x ) < 0 f(x)<0 f(x)<0).

证:就 A > 0 A>0 A>0 的情形证明.

因为 lim ⁡ x → x 0 = A > 0 \lim_{x\to x_0}=A>0 limxx0=A>0,所以,取 ε = A 2 > 0 \varepsilon=\frac{A}{2}>0 ε=2A>0,则 ∃   δ > 0 \exists\ \delta>0  δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) − A ∣ < A 2 ⇒ f ( x ) > A − A 2 = A 2 > 0. |f(x)-A|<\frac{A}{2}\Rightarrow f(x)>A-\frac{A}{2}=\frac{A}{2}>0. f(x)A<2Af(x)>A2A=2A>0.相同方法可以证明 A < 0 A<0 A<0 的情况.

从证明中可以得到一个更强的结论:

定理3’

如果 lim ⁡ x → x 0 f ( x ) = A ( A ≠ 0 ) \lim_{x\to x_0}f(x)=A(A\not=0) limxx0f(x)=A(A=0),那么就存在着 x 0 x_0 x0 的某一去心邻域 U ˚ ( x 0 ) \mathring{U}(x_0) U˚(x0),当 x ∈ U ˚ ( x 0 ) x\in\mathring{U}(x_0) xU˚(x0) 时,就有 ∣ f ( x ) ∣ > ∣ A ∣ 2 |f(x)|>\frac{|A|}{2} f(x)>2A.

由定理3,易得以下结论:

如果在 x 0 x_0 x0 的某去心邻域内 f ( x ) ≥ 0 f(x)\geq 0 f(x)0(或 f ( x ) ≤ 0 f(x)\leq 0 f(x)0),而且 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A,那么 A ≥ 0 A\geq 0 A0(或 A ≤ 0 A\leq 0 A0).

定理4(函数极限与数列极限的关系)

如果极限 lim ⁡ x → x 0 \lim_{x\to x_0} limxx0 存在. { x n } \{x_n\} {xn} 为函数 f ( x ) f(x) f(x) 的定义域内任一收敛于 x 0 x_0 x0 的数列,且满足: x n ≠ x 0 x_n\not=x_0 xn=x0( n ∈ N + n\in \mathbb{N}_+ nN+),那么相应的函数值数列 { f ( x n ) } \{f(x_n)\} {f(xn)} 必收敛,且 lim ⁡ n → ∞ f ( x n ) = lim ⁡ x → x 0 f ( x ) \lim_{n\to\infty}f(x_n)=\lim_{x\to x_0}f(x) limnf(xn)=limxx0f(x).

证:设 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_0}f(x)=A limxx0f(x)=A,则 ∀ ε > 0 , ∃   δ > 0 \forall \varepsilon>0,\exists\ \delta>0 ε>0, δ>0,当 0 < ∣ x − x 0 ∣ < δ 0<|x-x_0|<\delta 0<xx0<δ 时,有 ∣ f ( x ) − A ∣ < ε |f(x)-A|<\varepsilon f(x)A<ε.

又因 lim ⁡ n → ∞ x n = x 0 \lim_{n\to\infty}x_n=x_0 limnxn=x0,故对 δ > 0 \delta>0 δ>0, ∃   N \exists\ N  N,当 n > N n>N n>N 时,有 ∣ x n − x 0 ∣ < δ |x_n-x_0|<\delta xnx0<δ.

又假设, x n ≠ x 0 ( x ∈ N + ) x_n\not=x_0(x\in\mathbb{N}_+) xn=x0(xN+),故当 n > N n>N n>N 时, 0 < ∣ x n − x 0 ∣ < δ 0<|x_n-x_0|<\delta 0<xnx0<δ,从而 ∣ f ( x n ) − A ∣ < ε |f(x_n)-A|<\varepsilon f(xn)A<ε,即 lim ⁡ n → ∞ f ( x n ) = A \lim_{n\to\infty}f(x_n)=A limnf(xn)=A.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值