1.台大的林轩田:
基石:vc Theory、正则化、线性模型
技法:SVM、决策树、随机森林
2.张志华:
机器学习导论:频率派
统计机器学习:贝叶斯
3.吴恩达:
cs229
4:徐亦达:概率模型
深度学习:
李宏毅:
a:ML 2017
b:MLDS 2018
这篇博客汇总了多位专家在机器学习领域的见解,包括台大的林轩田的基础理论如vcTheory、正则化和线性模型,以及SVM、决策树等技法。张志华侧重于频率派的机器学习和贝叶斯统计。吴恩达的cs229课程深入浅出。徐亦达关注概率模型,而李宏毅则讲解了2017年的ML课程和2018年的MLDS。这些内容覆盖了从基础到深度学习的广泛知识。
1.台大的林轩田:
基石:vc Theory、正则化、线性模型
技法:SVM、决策树、随机森林
2.张志华:
机器学习导论:频率派
统计机器学习:贝叶斯
3.吴恩达:
cs229
4:徐亦达:概率模型
深度学习:
李宏毅:
a:ML 2017
b:MLDS 2018
354
8601

被折叠的 条评论
为什么被折叠?