TensorFlow中padding卷积的两种方式“SAME”和“VALID”

本文详细解析了在使用TensorFlow搭建卷积神经网络时遇到的关于padding设置问题,特别是SAME和VALID两种模式下输入输出尺寸的变化规律,并通过具体实例展示了不同设置下输出尺寸的计算方法。
部署运行你感兴趣的模型镜像

最近在用tensorflow搭建卷积神经网络,遇到了一个比较棘手的问题,我一直理解的padding有两个值,一个是SAME,一个是VALID,如果padding设置为SAME,则说明输入图片大小和输出图片大小是一致的,如果是VALID则图片经过滤波器后可能会变小。
如下图:
这里写图片描述
这里写图片描述

从程序中可以看出我的输入是5*5*3,过滤器是3*3*3,padding设置的值是SAME,所以我一开始预想的是输出5*5*7(有7个过滤器),可是最后程序运行的结果是3*3*7,和我预想的不一致,原来tensorflow官网定义的padding如下:

padding = “SAME”输入和输出大小关系如下:

这里写图片描述
输出大小等于输入大小除以步长向上取整,s是步长大小;


padding = “VALID”输入和输出大小关系如下:

这里写图片描述
输出大小等于输入大小减去滤波器大小加上1,最后再除以步长(f为滤波器的大小,s是步长大小)。


因此还是上述的那个例子,我的输入是5*5*3,滤波器是3*3*3,padding= “SAME”,步长s = 2,因此根据公式我的输出是(5/2=2.5),2.5向上取整是3,因此符合上述程序输出的结果,如果我将padding的值改成“VALID”,则最后的输出结果是
(5-3+1)/2=1.5,1.5向上取整是2,因此输出应该是2*2*7。
如下图:
这里写图片描述
这里写图片描述

程序运行符合结果!

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

TensorFlow 中,空洞卷积(Dilated Convolution)的输出大小计算方式与普通卷积类似,但需要考虑空洞率(dilation rate)对卷积核感受野的影响。输出大小的计算公式会受到输入大小、卷积核大小、步长(stride)、填充方式padding)以及空洞率(dilation rate)的影响。 ### 输出大小计算公式 #### 1. **Padding = 'VALID'** 当 `padding='VALID'` 时,表示不进行填充,因此输出大小会因为卷积操作而减小。空洞卷积的输出大小计算公式如下: $$ \text{output\_size} = \left\lfloor \frac{\text{input\_size} - \text{filter\_size} \times \text{dilation\_rate} + 1}{\text{stride}} \right\rfloor + 1 $$ 其中: - `input_size` 是输入的宽度或高度。 - `filter_size` 是卷积核的宽度或高度。 - `dilation_rate` 是空洞率。 - `stride` 是卷积的步长。 - `⌊ ⌋` 表示向下取整。 #### 2. **Padding = 'SAME'** 当 `padding='SAME'` 时,TensorFlow 会自动计算需要的填充量以确保输出大小与输入大小相同(不考虑步长的影响)。对于空洞卷积,其输出大小计算公式如下: $$ \text{output\_size} = \left\lceil \frac{\text{input\_size}}{\text{stride}} \right\rceil $$ 其中: - `input_size` 是输入的宽度或高度。 - `stride` 是卷积的步长。 - `⌈ ⌉` 表示向上取整。 ### 具体示例 #### 示例 1:`padding='VALID'` 假设输入大小为 4x4,卷积核大小为 3x3,空洞率为 2,步长为 1: $$ \text{output\_size} = \left\lfloor \frac{4 - 3 \times 2 + 1}{1} \right\rfloor + 1 = \left\lfloor \frac{4 - 6 + 1}{1} \right\rfloor + 1 = \left\lfloor -1 \right\rfloor + 1 = -1 + 1 = 0 $$ 由于输出大小不能为 0,这说明在这种情况下,卷积操作无法进行,因为输入大小不足以支持空洞卷积。 #### 示例 2:`padding='SAME'` 假设输入大小为 4x4,卷积核大小为 3x3,空洞率为 2,步长为 1: $$ \text{output\_size} = \left\lceil \frac{4}{1} \right\rceil = 4 $$ 在这种情况下,TensorFlow 会自动计算需要的填充量,使得输出大小与输入大小相同。 ### 代码示例 以下是一个使用 TensorFlow 的空洞卷积示例,展示如何计算输出大小: ```python import tensorflow as tf # 定义输入张量 input_tensor = tf.random.normal([1, 4, 4, 1]) # 输入形状为 (batch_size, height, width, channels) # 定义卷积核 kernel = tf.random.normal([3, 3, 1, 1]) # 卷积核形状为 (height, width, in_channels, out_channels) # 定义空洞卷积操作 output_tensor = tf.nn.conv2d(input_tensor, filters=kernel, strides=[1, 1, 1, 1], padding='VALID', dilations=[1, 2, 2, 1]) # 打印输出形状 print("输出形状:", output_tensor.shape) ``` 在这个示例中,`dilations=[1, 2, 2, 1]` 表示空洞率为 2,`padding='VALID'` 表示不进行填充。输出形状将根据上述公式计算。 ### 总结 - **Padding = 'VALID'**:输出大小会因为卷积操作而减小,具体取决于输入大小、卷积核大小、空洞率步长。 - **Padding = 'SAME'**:输出大小与输入大小相同(不考虑步长的影响),TensorFlow 会自动计算需要的填充量。 这些公式示例可以帮助你更好地理解计算 TensorFlow 中空洞卷积的输出大小。[^5]
评论 21
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值