贪心方法:总是对当前的问题作最好的选择,也就是局部寻优。最后得到整体最优。
应用:1:该问题可以通过“局部寻优”逐步过渡到“整体最优”,这是贪心选择性质与“动态规划”的主要差别。
2:最优子结构性质:某个问题的整体最优解包含了“子”问题的最优解。
完整的代码如下:
- #include "iostream"
- using namespace std;
- struct goodinfo
- {
- float p; //物品效益
- float w; //物品重量
- float X; //物品该放的数量
- int flag; //物品编号
- };//物品信息结构体
- void Insertionsort(goodinfo goods[],int n)
- {
- int j,i;
- for(j=2;j<=n;j++)
- {
- goods[0]=goods[j];
- i=j-1;
- while (goods[0].p>goods[i].p)
- {
- goods[i+1]=goods[i];
- i--;
- }
- goods[i+1]=goods[0];
- }
- }//按物品效益,重量比值做升序排列
- void bag(goodinfo goods[],float M,int n)
- {
- float cu;
- int i,j;
- for(i=1;i<=n;i++)
- goods[i].X=0;
- cu=M; //背包剩余容量
- for(i=1;i<n;i++)
- {
- if(goods[i].w>cu)//当该物品重量大与剩余容量跳出
- break;
- goods[i].X=1;
- cu=cu-goods[i].w;//确定背包新的剩余容量
- }
- if(i<=n)
- goods[i].X=cu/goods[i].w;//该物品所要放的量
- //按物品编号做降序排列
- for(j=2;j<=n;j++)
- {
- goods[0]=goods[j];
- i=j-1;
- while (goods[0].flag<goods[i].flag)
- {
- goods[i+1]=goods[i];
- i--;
- }
- goods[i+1]=goods[0];
- }
- cout<<"最优解为:"<<endl;
- for(i=1;i<=n;i++)
- {
- cout<<"第"<<i<<"件物品要放:";
- cout<<goods[i].X<<endl;
- }
- }
- int main(void)
- {
- cout<<"|--------运用贪心法解背包问题---------|"<<endl;
- cout<<"|-------------------------------------|"<<endl;
- int i,j,n;
- float M;
- goodinfo *goods; //定义一个指针
- cout<<"press <1> to run the program"<<endl;
- cout<<"press <0> to exit"<<endl;
- cin>>j;
- while(j)
- {
- cout<<"请输入物品的总数量:";
- cin>>n;
- goods=new struct goodinfo [n+1];
- cout<<"请输入背包的最大容量:";
- cin>>M;
- cout<<endl;
- for(i=1;i<=n;i++)
- {
- goods[i].flag=i;
- cout<<"请输入第"<<i<<"件物品的重量:";
- cin>>goods[i].w;
- cout<<"请输入第"<<i<<"件物品的效益:";
- cin>>goods[i].p;
- goods[i].p=goods[i].p/goods[i].w; //得出物品的效益,重量比
- cout<<endl;
- }
- Insertionsort(goods,n);
- bag(goods,M,n);
- cout<<"press <1> to run agian"<<endl;
- cout<<"press <0> to exit"<<endl;
- cin>>j;
- }
- system("pause");
- return 0;
- }