计算机视觉
文章平均质量分 80
计算机视觉的英文简称是Computer Vision,通常缩写为CV。计算机视觉是一门研究如何使机器“看”的科学,进一步来说,就是使用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等。其本质是模拟人类的感知与观察的一个过程,这个过程包含了一系列的操作,并且最终可以在人工系统中被理解和实现。
-O-joker
一名热衷于Python编程及网络爬虫技术的开发者,专注Python干货分享,期待有更多的机会与各界朋友合作,共同探索技术的无限可能,创造更加美好的未来
展开
-
如何在 Windows 系统环境下安装 Tesseract OCR? ( •̀ ω •́ )✧
访问Tesseract的GitHub发布页面或第三方下载站点,下载适合你操作系统的版本(最新版本)。原创 2024-07-29 16:52:17 · 2100 阅读 · 0 评论 -
Tesseract OCR 当今最流行的OCR引擎之一,Tesseract 不仅保持了其开源特性,还引入了深度学习技术,显著提升了识别的准确性和速度。看来有必要深入了解一下 ( •̀ ω •́ )
Tesseract OCR项目的历史可以追溯到1980年代末,最初由HP(惠普)实验室的Raymond Smith、David Hoover和其他几位研究人员开发。起初,Tesseract是为了满足联合国和图书馆对文档数字化的需求而设计的。随着技术的不断发展,Tesseract逐渐演变为一个开源项目🙌,并在2005年被Google收购,自此之后,Google投入了大量资源对Tesseract进行改进和扩展,使其成为当今最流行的OCR引擎之一👍。原创 2024-07-26 16:57:00 · 2166 阅读 · 0 评论 -
简单了解一下计算机视觉的发展历程哦 (*  ̄︿ ̄)
计算机视觉作为人工智能领域的重要分支,其发展历程经历了从萌芽到广泛应用的多个阶段。这一过程不仅见证了技术的飞速进步,也深刻影响了多个行业的发展。原创 2024-07-18 14:59:51 · 1902 阅读 · 0 评论 -
深入了解一下计算机视觉的主流框架及其应用方向 (⊙o⊙)?
计算机视觉作为人工智能的一个重要分支,旨在通过模拟人类视觉系统,从数字图像和视频中提取信息以实现对环境的高级理解。近年来,随着深度学习技术的飞速发展,计算机视觉领域涌现出了一系列高效、强大的框架,这些框架极大地推动了计算机视觉技术在各个领域的应用。本文将详细介绍计算机视觉领域的主要框架,并详细探讨其在图像识别、图像分割等任务中的应用,同时分析其优缺点及挑战,最后给出一些应用建议。TensorFlow是由Google开发和维护的一个广泛采用的深度学习框架。原创 2024-07-19 10:40:50 · 2333 阅读 · 0 评论 -
OpenCV 安装与基础使用教程(Python)
图像读取与显示:使用imread和imshow函数。色彩空间转换:使用cvtColor函数。图像平滑:如高斯模糊GaussianBlur。边缘检测:如Canny边缘检测器。目标检测:如使用Haar特征分类器进行人脸检测。特征提取和匹配:如SIFT、SURF、ORB等。图像变换:如仿射变换、透视变换。形态学操作:如腐蚀、膨胀、开运算、闭运算。视频处理:从文件或摄像头读取视频,进行实时处理。原创 2024-07-19 13:44:30 · 914 阅读 · 0 评论
分享