53. Maximum Subarray

53. Maximum Subarray

题目描述

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.

给出一个长度为N的序列:求a1,a2,……,an中最大连续的序列和。
如数组[-2,1,-3,4,-1,2,1,-5,4],最大子序列和为 [4,-1,2,1],结果为6。

解题思路

这道题比较好的解法是经典的动态规划。利用状态转移函数:

sum(j) = max{sum(j)+a[j], a[j]}, //时间复杂度 O(n)

sum[i]记录以a[i]为子序列末端的最大连续和。在dp的过程中便可以更新sum数组的最大值以及两个边界。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT_MIN;
        int sum = 0;
        for (int i = 0; i < nums.size(); i++) {
            sum = max(sum+nums[i], nums[i]);
            result = max(result, sum);
        }
        return result;
    }
};
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页