474. Ones and Zeroes

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/t6_17/article/details/78729990

474. Ones and Zeroes

题目

In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.

For now, suppose you are a dominator of m 0s and n 1s respectively. On the other hand, there is an array with strings consisting of only 0s and 1s.

Now your task is to find the maximum number of strings that you can form with given m 0s and n 1s. Each 0 and 1 can be used at most once.

Note:

The given numbers of 0s and 1s will both not exceed 100
The size of given string array won’t exceed 600.

Example 1:

Input: Array = {“10”, “0001”, “111001”, “1”, “0”}, m = 5, n = 3
Output: 4
Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”

Example 2:

Input: Array = {“10”, “0”, “1”}, m = 1, n = 1
Output: 2
Explanation: You could form “10”, but then you’d have nothing left. Better form “0” and “1”.

题目要求一个字符串vector中能找够m个0,n个1的最多的字符串数。
用dp[i][j]表示,状态转移方程:

dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1)

代码实现

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        for (string str : strs) {
            int zeros = 0, ones = 0;
            for (char c : str) (c == '0') ? ++zeros : ++ones;
            for (int i = m; i >= zeros; --i) {
                for (int j = n; j >= ones; --j) {
                    dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1);
                }
            }
        }
        return dp[m][n];
    }
};
展开阅读全文

没有更多推荐了,返回首页