PyCUDA矩阵乘法

import numpy as np
from pycuda import driver, gpuarray
from pycuda.compiler import SourceModule
import pycuda.autoinit
MATRIX_SIZE = 3  
matrix_mul_kernel = """
__global__ void Matrix_Mul_Kernel(float *d_a, float *d_b, float *d_c)
{
      int tx = threadIdx.x;
      int ty = threadIdx.y;
      float value = 0;
  
      for (int i = 0; i < %(MATRIX_SIZE)s; ++i) 
      {
          float d_a_element = d_a[ty * %(MATRIX_SIZE)s + i];
          float d_b_element = d_b[i * %(MATRIX_SIZE)s + tx];
           value += d_a_element * d_b_element;
      }
 
       d_c[ty * %(MATRIX_SIZE)s + tx] = value;
   } """
  
matrix_mul = matrix_mul_kernel % {'MATRIX_SIZE': MATRIX_SIZE}
  
mod = SourceModule(matrix_mul)
  
h_a = np.random.randint(1,5,(MATRIX_SIZE, MATRIX_SIZE)).astype(np.float32)
h_b = np.random.randint(1,5,(MATRIX_SIZE, MATRIX_SIZE)).astype(np.float32)
  
# compute on the CPU to verify GPU computation
h_c_cpu = np.dot(h_a, h_b)
    
d_a = gpuarray.to_gpu(h_a) 
d_b = gpuarray.to_gpu(h_b)
  
d_c_gpu = gpuarray.empty((MATRIX_SIZE, MATRIX_SIZE), np.float32)
  
matrixmul = mod.get_function("Matrix_Mul_Kernel") 
 
matrixmul(d_a, d_b,d_c_gpu, block = (MATRIX_SIZE, MATRIX_SIZE, 1))

if (h_c_cpu.all() == d_c_gpu.get().all()) :
    print("\n\nThe computed matrix multiplication is correct")

两个3×3的矩阵初始化为1到5的随机整数,这些矩阵使用gpuarray类的 to_gpu方法上载到设备显存。创建空的GPU数组以将结果存储在设备上,这三个变量作为参数传递给内核函数。内核函数是以矩阵大小作为x和y方向的维度来调用的。使用get()方法将结果下载回主机。控制台上打印两个输入矩阵和GPU计算的结果,矩阵乘法也在CPU上使用numpy库的dot方法计算。并与GPU结果进行了比较,验证了内核计算的结果。

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
PyCUDA是一个用于Python的GPU计算库,它允许使用NVIDIA CUDA平台在Python中编写CUDA代码。下面是一个简单的PyCUDA教程,它将向您展示如何安装和使用该库。 1. 安装CUDA 在开始使用PyCUDA之前,您需要安装CUDA。请确保您的计算机上安装了适当版本的CUDA。可以从NVIDIA的官方网站上下载并安装。 2. 安装PyCUDA 在安装CUDA之后,您需要安装PyCUDA。可以使用pip来安装PyCUDA。打开终端并运行以下命令: ``` pip install pycuda ``` 注意:在安装PyCUDA之前,您需要确保已安装以下依赖项: - NVIDIA CUDA Toolkit - Python NumPy - Python setuptools 3. 编写第一个PyCUDA程序 现在,您已经安装了PyCUDA,让我们编写一个简单的程序来测试一下。 ```python import pycuda.driver as cuda import pycuda.autoinit from pycuda.compiler import SourceModule # 定义CUDA内核 mod = SourceModule(""" __global__ void multiply_them(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; } """) # 获取内核函数 multiply_them = mod.get_function("multiply_them") # 定义输入 a = cuda.InOut(np.ones(10).astype(np.float32)) b = cuda.InOut(np.ones(10).astype(np.float32)) dest = cuda.InOut(np.zeros(10).astype(np.float32)) # 调用内核函数 multiply_them(dest, a, b, block=(10, 1, 1)) # 打印输出 print(dest) ``` 代码中的注释解释了每个步骤的作用。 这是一个非常基本的例子,但它演示了如何使用PyCUDACUDA设备上运行一个简单的内核函数。 4. 总结 这就是一个简单的PyCUDA教程。通过这个教程,您应该已经了解了PyCUDA的基本知识,并学会了如何安装和使用它。如果您想深入学习PyCUDA,可以查看PyCUDA文档以获取更多信息。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

给算法爸爸上香

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值