智能车图像处理25-进阶篇17--弯道拐点的判断

31 篇文章 1075 订阅 ¥9.90 ¥99.00
本文详细介绍了在图像处理中如何检测自动驾驶场景中的弯道拐点,包括核心算法和代码分析,为处理复杂问号弯提供基础。
摘要由CSDN通过智能技术生成

前言

希望大家多多点赞评论收藏哦,不懂的地方评论区留言就好。

这篇文章主要讲述图像处理中如何判断弯道的拐点,为特殊的问号弯判断做铺垫。

场景图
在这里插入图片描述

思路讲解:
在这里插入图片描述

一、函数主体

void findwanguaidian()
{
   
    int j
根据引用\[1\]和引用\[3\]的内容,可以使用霍夫变换的方法进行智能小车的循线识别。首先,需要对相机视野进行畸变校正,可以使用MATLAB的cameraCalibrator工具进行标定,获取畸变校正参数。然后,读取图像中的像素点,并使用霍夫变换检测直线。通过计算直线的平均偏移量和斜率接近于0的线段数量,可以判断小车的偏移情况和是否有直角弯道。 具体的代码实现可以参考以下步骤: 1. 进行相机视野畸变校正,获取畸变校正参数。 2. 读取图像,并进行预处理,如灰度化、二值化等。 3. 使用霍夫变换检测直线,得到直线的起点和终点坐标。 4. 遍历所有直线的起点和终点坐标,计算平均偏移量和斜率接近于0的线段数量。 5. 根据平均偏移量判断小车的偏移情况,根据斜率接近于0的线段数量判断是否有直角弯道。 需要注意的是,以上是一个简单的概述,具体的代码实现还需要根据实际情况进行调整和完善。同时,可以参考引用\[2\]中的内容,了解更多关于相机畸变校正的方法和参数获取的细节。 #### 引用[.reference_title] - *1* *3* [基于Python OpenCV、使用霍夫变换的小车视觉循线识别](https://blog.csdn.net/m0_73232812/article/details/130117113)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [智能小车巡线功能的实现(python,ubuntu,opencv)](https://blog.csdn.net/weixin_62135607/article/details/127036853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@白圭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值