sklearn函数CountVectorizer()和TfidfVectorizer()计算方法介绍

sklearn函数CountVectorizer()和TfidfVectorizer()计算方法介绍

CountVectorizer()函数

CountVectorizer()函数只考虑每个单词出现的频率;然后构成一个特征矩阵,每一行表示一个训练文本的词频统计结果。其思想是,先根据所有训练文本,不考虑其出现顺序,只将训练文本中每个出现过的词汇单独视为一列特征,构成一个词汇表(vocabulary list),该方法又称为词袋法(Bag of Words)。

举一个栗子:

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
texts=["orange banana apple grape","banana apple apple","grape", 'orange apple'] 
cv = CountVectorizer()
cv_fit=cv.fit_transform(texts)
print(cv.vocabulary_)
print(cv_fit)
print(cv_fit.toarray())

输出如下:

{'orange': 3, 'banana': 1, 'apple': 0, 'grape': 2}
#这里是根据首字母顺序,将texts变量中所有单词进行排序,apple首字母为a所以排第一,banana首字母为b所以排第二                                                                      
  (0, 3)	1
  (0, 1)	1
  (0, 0)	1
  (0, 2)	1 # (0, 2)  1 中0表示第一个字符串"orange banana apple grape",2对应上面的'grape': 2, 1表示出现次数1。
  (1, 1)	1
  (1, 0)	2
  (2, 2)	1
  (3, 3)	1
  (3, 0)	1
[[1 1 1 1]  # 第一个字符串,排名0,1,2,3词汇(apple,banana,grape,orange)出现的频率都为1
 [2 1 0 0] #第二个字符串,排名0,1,2,3词汇(apple,banana,grape,orange)出现的频率为2,1,00
 [0 0 1 0]
 [1 0 0 1]]

TfidfVectorizer()函数
TfidfVectorizer()基于TF-IDF算法。此算法包括两部分TF和IDF,两者相乘得到TF-IDF算法。
TF算法统计某训练文本中,某个词的出现次数,计算公式如下:
![TF算法]
IDF 算法,用于调整词频的权重系数,如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。
注意sklearn中idf的计算公式与一般书中介绍的不一样,当TfidfVectorizer 的参数use_idf(参数默认值为True)为True时就是按照如下算法来计算IDF
IDF算法
N=训练集文本总数, N(x)=包含词x的文本数

TF-IDF算法=TF算法 * IDF算法

我们依旧采用上面的例子:

from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
texts=["orange banana apple grape","banana apple apple","grape", 'orange apple']
cv = TfidfVectorizer(norm=None)
cv_fit=cv.fit_transform(texts)
print('特征向量')
#print(sorted(cv.vocabulary_))
print(cv.vocabulary_)
print('IDF值')
print(cv.idf_)
print('TF文档-词矩阵')
print([[1,1,1,1],
       [2,1,0,0],
       [0,0,1,0],
       [1,0,0,1]])
print('TF-IDF文档-词矩阵')
print(cv_fit.toarray())
print(cv_fit)

输出如下:

特征向量
{'orange': 3, 'banana': 1, 'apple': 0, 'grape': 2}
IDF值
[1.22314355 1.51082562 1.51082562 1.51082562]
IDF(orange)=np.log((4+1)/(2+1))+1=1.5108256237659907
训练集文本总数4, 包含词orange的文本数2
TF文档-词矩阵
[[1, 1, 1, 1],
 [2, 1, 0, 0], 
 [0, 0, 1, 0],
 [1, 0, 0, 1]]
TF-IDF文档-词矩阵
[[1.22314355 1.51082562 1.51082562 1.51082562]
 [2.4462871  1.51082562 0.         0.        ]
 [0.         0.         1.51082562 0.        ]
 [1.22314355 0.         0.         1.51082562]]
  (0, 2)	1.5108256237659907
  (0, 0)	1.2231435513142097
  (0, 1)	1.5108256237659907
  (0, 3)	1.5108256237659907
  (1, 0)	2.4462871026284194
  (1, 1)	1.5108256237659907
  (2, 2)	1.5108256237659907
  (3, 0)	1.2231435513142097
  (3, 3)	1.5108256237659907

norm='l2’范数时,就是对文本向量进行归一化
TfidfVectorizer参数norm默认值为‘L2’范数

cv = TfidfVectorizer()
cv_fit=cv.fit_transform(texts)
print(cv.vocabulary_)
print(cv.idf_)
print(cv_fit.toarray())
print(cv_fit)

输出如下:

{'orange': 3, 'banana': 1, 'apple': 0, 'grape': 2}
[1.22314355 1.51082562 1.51082562 1.51082562]
[[0.42344193 0.52303503 0.52303503 0.52303503]
 [0.8508161  0.52546357 0.         0.        ]
 [0.         0.         1.         0.        ]
 [0.62922751 0.         0.         0.77722116]]
  (0, 2)	0.5230350301866413
  (0, 0)	0.423441934145613
  (0, 1)	0.5230350301866413
  (0, 3)	0.5230350301866413
  (1, 0)	0.8508160982744233
  (1, 1)	0.5254635733493682
  (2, 2)	1.0
  (3, 0)	0.6292275146695526
  (3, 3)	0.7772211620785797

取 IDF值的L2范数即可得上面的数据:

a=np.array([1.22314355 ,1.51082562, 1.51082562, 1.51082562])
a*(1.0/np.sqrt(math.pow(1.22314355,2)+math.pow(1.51082562,2)*3.0))
输出:
array([0.42344193, 0.52303503, 0.52303503, 0.52303503])

参考:sklearn.feature_extraction.text.TfidfVectorizer

  • 11
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: sklearn是一个在Python中使用的机器学习库,它提供了各种各样的工具和算法来进行机器学习任务。其中一个著名的算法是随机森林。 随机森林是一种集成学习方法,它由多棵决策树组成。每棵树都是通过对训练数据随机采样而得到的,这样可以增加模型的多样性。在分类问题中,随机森林的输出结果是所有树的多数投票结果。 文本分类是一种通过将文本分配到预定义类别之一的任务。在sklearn中,可以使用随机森林算法来进行文本分类。具体步骤如下: 1. 准备数据:将文本数据转换为可以被机器学习算法处理的形式。常用的方法是将文本转换成词袋模型,其中每个文本被表示为一个向量,向量的每个维度代表一个单词,而值表示该单词在文本中出现的频率或权重。 2. 特征提取:根据数据的特点和需求选择适当的特征提取方法。常用的方法包括词频(TF)、逆文档频率(IDF)和词嵌入(Word Embedding)等。 3. 模型训练:使用sklearn的随机森林分类器(RandomForestClassifier)进行模型训练。可以根据需要设置相关的超参数,如树的个数、树的最大深度等。 4. 模型评估:使用测试集对训练好的模型进行评估,常用的评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1值等。可以使用sklearn的分类评估函数来计算这些指标。 随机森林算法在文本分类任务中具有好的性能,可以处理大规模数据集,并且可以防止过拟合问题。它是一种强大的工具,可以用于解决许多实际的文本分类问题。 ### 回答2: sklearn是一个Python机器学习库,其中包含了许多强大的算法和工具,随机森林是其中一个常用的算法之一,用于解决分类问题。 随机森林是一种集成学习算法,它由多个决策树组成。随机森林的主要思想是通过在构建决策树时引入随机性,来减少模型的方差和过拟合的风险。 在文本分类中,我们可以使用sklearn的随机森林算法来进行文本分类任务。首先,我们需要将文本数据转换成数值特征,常见的方法包括词袋模型和TF-IDF(词频-逆向文档频率)模型。 接下来,我们可以使用sklearn的随机森林分类器进行训练和预测。在sklearn中,可以使用RandomForestClassifier类来创建一个随机森林分类器。我们可以设定一些参数,如决策树的数量、最大深度等。 训练过程中,随机森林会使用自助采样的方法(bootstrap sampling)随机选择训练样本,并利用这些样本构建多个决策树。每个决策树都会在一个随机的特征子集上进行分裂,以增加随机性。 在预测时,随机森林会将每个决策树的预测结果综合起来,采用多数投票的方式确定最终的分类结果。 使用sklearn的随机森林文本分类器,我们可以方便地进行文本分类任务。它具有良好的准确性和鲁棒性,能够处理较大规模的文本数据集。 总结来说,sklearn的随机森林算法是一种强大的工具,在文本分类任务中具有广泛的应用。它通过多个决策树的集成,降低了模型的方差和过拟合的风险,同时能够处理大规模的文本数据集。 ### 回答3: sklearn是一个强大的Python机器学习库,它包含大量用于文本分类的工具和算法。其中之一就是随机森林算法,它是一种集成学习算法,可以用于解决分类问题。 随机森林算法在文本分类中的应用非常广泛。在使用sklearn库进行文本分类时,我们可以使用RandomForestClassifier类来创建随机森林分类器模型。该模型可以根据文本的特征将其分为不同的类别。 首先,我们需要将文本数据转化为特征向量。这可以通过使用sklearn提供的文本特征抽取器(如CountVectorizerTfidfVectorizer)来实现。这些特征抽取器可以将文本转化为一组数值特征,以便让随机森林算法进行分类。 接下来,我们可以创建一个随机森林分类器对象,并使用fit函数将训练数据和标签传递给模型进行训练。训练过程将基于提供的特征和标签,构建一棵或多棵决策树。 训练完成后,我们就可以使用模型来进行预测了。使用predict函数,我们可以将新的文本数据转化为特征向量,并将其输入到随机森林分类器模型中进行分类。模型将返回预测的类别标签。 随机森林算法的一个重要特点是能够处理大规模的文本数据,并具有很好的分类性能。它可以有效地解决文本分类中的过拟合问题,并提供准确的分类结果。 总而言之,sklearn库中的随机森林算法是一种强大的文本分类工具。它能够根据文本的特征对其进行分类,并具有良好的性能。通过合理选择特征和调整模型的参数,我们可以获得更好的分类效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值