8.12.11 ACM-ICPC数学 数论 乘法逆元

8.12.11 ACM-ICPC数学 数论:乘法逆元

在数论和现代密码学中,乘法逆元是一个重要的概念,特别是在涉及模运算的环境中。乘法逆元的理论和应用在编程竞赛如ACM-ICPC中尤为关键,特别是在解决与同余、加密和算法优化相关的问题时。

什么是乘法逆元

对于非零整数 𝑎a 和模 𝑚m,如果存在一个整数 𝑏b 使得: 𝑎𝑏≡1 (mod 𝑚)ab≡1 (mod m) 那么称 𝑏b 是 𝑎a 模 𝑚m 的乘法逆元。这意味着 𝑏b 是 𝑎a 在模 𝑚m 环境下的一个乘法逆,这使得 𝑎a 和 𝑏b 的乘积模 𝑚m 等于 1。

计算乘法逆元的方法

扩展欧几里得算法

最常用且有效的计算单个乘法逆元的方法是使用扩展欧几里得算法。如果 𝑎a 和 𝑚m 是互质的(即 𝑔𝑐𝑑(𝑎,𝑚)=1gcd(a,m)=1),那么可以使用此算法找到逆元。该算法不仅可以用来计算 𝑔𝑐𝑑(𝑎,𝑚)gcd(a,m),还可以被用来解找出满足以下等式的 𝑥x 和 𝑦y: 𝑎𝑥+𝑚𝑦=𝑔𝑐𝑑(𝑎,𝑚)ax+my=gcd(a,m) 这里 𝑥x 就是 𝑎a 模 𝑚m 的乘法逆元。

费马小定理

当模数 𝑚m 是一个质数时,可以使用费马小定理来计算逆元。根据费马小定理: 𝑎𝑚−1≡1 (mod 𝑚)am−1≡1 (mod m) 从这个等式中可以推出: 𝑎⋅𝑎𝑚−2≡1 (mod 𝑚)a⋅am−2≡1 (mod m) 因此,𝑎𝑚−2am−2 (在模 𝑚m 下计算)就是 𝑎a 的逆元。

乘法逆元在ACM-ICPC中的应用

在编程竞赛中,尤其是在涉及模运算的算法题目中,经常需要使用到乘法逆元来进行除法运算。例如,在计算组合数 𝐶(𝑛,𝑘)=𝑛!𝑘!(𝑛−𝑘)!C(n,k)=k!(n−k)!n!​ 时,如果题目要求输出结果对某个质数 𝑝p 取模,直接使用除法是不可行的。这时,可以使用乘法逆元来转换除法为乘法: 𝐶(𝑛,𝑘)≡𝑛!⋅(𝑘!)−1⋅((𝑛−𝑘)!)−1 (mod 𝑝)C(n,k)≡n!⋅(k!)−1⋅((n−k)!)−1 (mod p) 其中 (𝑘!)−1(k!)−1 和 ((𝑛−𝑘)!)−1((n−k)!)−1 是 𝑘!k! 和 (𝑛−𝑘)!(n−k)! 在模 𝑝p 下的逆元。

总结

乘法逆元是解决编程竞赛中很多数论问题的关键工具,尤其是在涉及模运算的场景下。掌握计算乘法逆元的各种方法,能够帮助竞赛选手有效地解决问题,提高解题效率和准确性。在实际应用中,选择合适的方法计算乘法逆元,依赖于问题的具体要求,如模数是否为质数,以及数据规模的大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值