坦GA的博客

该对自己狠一点了

Elastic-Job何为分布式作业

原文地址:http://dangdangdotcom.github.io/elastic-job/post/1.x/distribution/

何为分布式作业?

分片概念

任务的分布式执行,需要将一个任务拆分为n个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。

例如:有一个遍历数据库某张表的作业,现有2台服务器。为了快速的执行作业,那么每台服务器应执行作业的50%。 为满足此需求,可将作业分成2片,每台服务器执行1片。作业遍历数据的逻辑应为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。 如果分成10片,则作业遍历数据的逻辑应为:每片分到的分片项应为ID%10,而服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9,直接的结果就是服务器A遍历ID0-4结尾的数据;服务器B遍历ID5-9结尾的数据。

分片项与业务处理解耦

Elastic-job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系。

分布式作业的执行

Elastic-job并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。

注册中心仅用于作业注册和监控信息存储。而主作业节点仅用于处理分片和清理等功能。

个性化参数的适用场景

个性化参数即shardingItemParameters,可以和分片项匹配对应关系,用于将分片项的数字转换为更加可读的业务代码。

例如:按照地区水平拆分数据库,数据库A是北京的数据;数据库B是上海的数据;数据库C是广州的数据。 如果仅按照分片项配置,开发者需要了解0表示北京;1表示上海;2表示广州。 合理使用个性化参数可以让代码更可读,如果配置为0=北京,1=上海,2=广州,那么代码中直接使用北京,上海,广州的枚举值即可完成分片项和业务逻辑的对应关系。

作业高可用

Elastic-job提供最安全的方式执行作业。将分片项设置为1,并使用多于1台的服务器执行作业,作业将会以1n从的方式执行。

一旦执行作业的服务器崩溃,等待执行的服务器将会在下次作业启动时替补执行。 开启失效转移功能效果更好,可以保证在本次作业执行时崩溃,备机立即启动替补执行。

最大限度利用资源

Elastic-job也提供最灵活的方式,最大限度的提高执行作业的吞吐量。将分片项设置为大于服务器的数量,最好是大于服务器倍数的数量,作业将会合理的利用分布式资源,动态的分配分片项。

例如:3台服务器,分成10片,则分片项分配结果为服务器A=0,1,2;服务器B=3,4,5;服务器C=6,7,8,9。 如果服务器C崩溃,则分片项分配结果为服务器A=0,1,2,3,4;服务器B=5,6,7,8,9。在不丢失分片项的情况下,最大限度的利用现有资源提高吞吐量。


==============================================================================================================

阅读更多
个人分类: Elastic-Job/TBSchedule
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

Elastic-Job何为分布式作业

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭